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An explanation of experimental NMR relaxation times, T2, for He adsorbed on Grafoil
at coverages just greater than one monolayer is given in terms of the dipolar interaction
of first-layer particles modulated by quantum exchange of particles between first and
second layers. It is found that a Heisenberg-Hamiltonian description fails and one must
use an exchange operator formulation which permits transitions among second-layer k
states during the exchange process.

Helium adsorbed on Grafoil represents a quasi-
two-dimensional system which has a number of
interesting phases, ' e.g. , gas, liquid, solid, and
registered solid. Recently, experimental NMR
results' (Fig. 1) have shown evidence for three
distinct phases at T= 1 K: (a) a fluid phase for
coverage x 0.7; (b) a two-dimensional solid for
0.7 ~ x~ 1.0, and (c) a phase for x~ 1 for which

T, increases linearly with coverage. Theoretical
calculations' for region (b) showed that the T,
data could be explained in terms of a dipolar line-
width motionally narrowed by quantum tunneling.
Region (c) of the T, data was tentatively identified
as being caused by the formation of the second
layer of helium atoms with motion via exchange
with the first layer. Evidence for a registered

phase was also reported recently. '
In this Letter I report calculations which justify

the explanation of region (c) in terms of interlay-
er exchange. The novel feature of this explana-
tion is the discovery that a calculation based on a
Heisenberg-exchange Hamiltonian proves inade-
quate and one needs an exchange operator formu-
lation. ~ The exchange operator is usually writ-
ten in the form'

+exch ~P ~P)~ (~)

where P~'~ is a pair permutation operator in spin
space and g~ is an operator having diagonal and
off-diagonal elements in position space (usually
in a phonon basis). This concept was originally
suggested by Thouless, 4 and developed later by
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FIG. 1. Data from Ref. 2 showing values of T~ vs
coverage g. The region of interest for this paper is
for ~= 1. The data of this region are fitted quite well
by the straight line 7'2 =0.18+3.0(g —0.98). The loga-
rithmic scale distorts this linearity.

1.5

bile particles with second-layer coverage x, —= x
—1=N—,/N«1, with N= N, +N, A second-layer
particle is presumed to tunnel rapidly from site
to site, the sites being above the centers of the
triangles established by the first-layer solid.
There are thus M=2N, sites, R„on the second
layer. A tight-binding wave function for a single
particle in wave-vector and spin states (k, p) on
the second layer is

(z „(r, m) = ~ Q exp(ik R,)p(r —R,)$„(&u) (2)

in which y is a localized wave function and $ „ is
a spin function.

The relaxation time T, is given in the Gaussian
approximation for the correlation function, in
terms of the second and fourth moments of the
NMR line' as

Nosanom and 7'arma, ' Guyer, ' McMahan, ' and
Mullin' for bulk 'He systems. While the one-pho-
non matrix element of g~ can be related to the
magnetic Gruneisen constant' and the two-phonon
matrix element to spin-lattice relaxation, it is
probably safe to say that this concept has not oc-
cupied a particularly vital place in the theory of
bulk 'He. By contrast, it mill be shown here that
the theory of the transverse relaxation for x&1.0
depends crucially on the possibility of second-
layer k-state transitions upon exchange of first-
and second-layer particles.

The first layer is taken to be a solid of N, par-
ticles in a triangular lattice with motion via quan-
tum tunneling (at the rate corresponding to @=1).
The second layer is assumed to contain N, mo-

T ' = (n/2)'"M, (M /M )'"
The process we mish to consider here, namely
interlayer exchange, alters M4 so that it becomes
M, '"'++~,"s, where M, '"' involves exchange
within the first layer; and M4 ", exchange be-
tween the layers. Calculations of M, and M4~"'
for the solid first layer have been reported pre-
viously. "' There are additional modifications on

T, of the form T, '=(T, ')»+x, (T, ')»+x,~(T, ')»,
where (T, ')„ involves the dipolar interaction be-
tween particles in the nth and mth layers. The
terms in x, and x,' cause T, to decrease with in-
creasing x, and so cannot provide an explanation
of the data; however, their effect will be consid-
ered in a more comprehensive theoretical treat-
ment which I do not describe here.

My starting point is the expression for the ex-
change -modulated fourth moment"

M, = ——,'Tr(exp(- pH~) [H,„,„, [ G„ I„]]')/h' Tr [exp(- pIi~) I„'],

in which exp(- pH~) is the lattice density matrix (the high-temperature approximation has been made
for the spin density matrix), H,„,„ is the exchange operator in Eq. (1), 6, is the adiabatic portion of
the dipolar Hamiltonian, "and E„ is the total x component of spin. ln the usual treatment'0 of (4), the
trace is just taken over the spin states, H,„,„ is an operator only in spin space, and the lattice is other-
mise considered rigid. However, here one must consider the possibility of translational motion by the
particles in the second layer, each having a wave function given by Eq. (2), with H, „,„possibly having
off-diagonal elements. Considering only pair exchanges, one has

(k', i
t H, „,„(1,2) I i, k) = —Z(k, R')P„",

in which J,.(k, k ) is an exchange integral which is not diagonal in k space. See Fig. 2(a). (Because the
first layer and substrate can absorb or provide momentum, the second-layer k state may change. '2)

P»~'~ is the spin pair-permutation operator for particles 1 and 2 [P»~'~ = 2(1+a, o2)J, with 1 initially
in the first layer, and 2 in the second. The density matrix is diagonal in the R representation. For
simplicity, the R matrix elements of H~ are taken to be of the form e„=h'0'/2m* all the way to the zone
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boundary, where m* is the effective mass for a particle in the band of second-layer states. Below I
take n;~ = m, the bare 'He mass. Taking the spin trace results in

g (I' ")'[2J (k k')J (k' k)+J (R k')J (k' k)J
k,%',j

(6)

in which i and j represent lattice sites on the first layer on which sit particles interacting by the spa-
tial factor F, ' in the adiabatic portion Go of the dipolar Hamiltonian; Z is the density-matrix normali-
zation factor.

One can transform Eq. (6) to a lattice representation by calculating J',(k, k') via the states of Eq. (2).
One can show

J;(R, R') = = Q exp(-iR. R, ) exp(ik'R, )J;(a, b),
a,b

(7)

in which J;(a, b) is an exchange integral representing a particle on second-layer site a hopping to first-
layer site i, while the first-layer particle hops to second-. layer site b [much as indicated in Fig. 2(a)J.
Thus the localized form of exchange is also off-diagonal. " The result is

b)J;(b, c)+J(a, b)J,.(b, c)). (8)
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FIG. 2. (a) A representation of the exchange-operator
matrix element J;(%,k') showing two particles inter-
charging layers and the change of k states. The parti-
cle in state k drops in the first layer vrhi1e the parti-
cle on site i jumps to the second layer and into state
k'. (b), (c} Typical diagrams occurring in the lattice
sums of Eq. (8). The line connecting & and j in the
first layer represents the dipolar interaction.

Under the usual experimental conditions (T = 1 K),
the density matrix in the localized representation
[the exponential in Eq. (8)] is essentially unity
for all relevant values of R„ in the lattice sum.
Equation (8) can be considered in terms of dia-
grams showing the path of motion of the particles
during the exchange process. Examples are
shown in Figs. 2(b) and 2(c).

Equation (8) shows that, instead of a single ex-
change parameter, this theory has serial, the
values of which depend on the relative orientation,
on the second-layer lattice, of R, and R,. I have
not yet computed any of these parameters from
first principles. Such a calculation requires cor-
related first-layer, second-layer pair wave func-
tions. Preliminary work has shown that calcula-
tion of these wave functions presents unexpected
difficulties. '4 For the sake of a comparison with
experiment I assume that all first-layer -second-

layer exchange integrals are identical and equal
to the single parameter, J». The lattice sums
may then be carried out and it is found, for the
external field in the plane of the layers, that

I '"'=»4 0J '@' '/d'

with d the nearest-neighbor distance in the first-
layer solid and y the gyromagnetic ratio. With
M4" taken from Ref. 2 or 11, I find

(~ (il) + ~ (12))1/2/( /2)l/2~ 3/2
2 4 2 4 2

=- T2(xm= 0)[1+x21.8 J,s /J„2],

where J» represents the exchange integral with-
in the first-layer solid at monolayer completion.
The experimental data' require 1.8J»'/J»' -17, —
or J»/J» —-3.0. That this ratio is a reasonable
one is shown crudely as follows: The separation
between layers" is -3.4 A and the nearest-neigh-
bor distance at x= I is -3.2 A; then from Ref. 2,
one obtains J» (d = 3.4) /J» (d = 3.2) =3.5.

The results of Eq. (8) can be derived directly
by taking the trace in localized states, however;
then the density matrix exp(-PH~) is also non-
diagonal because H~ includes particle hopping in
the second layer. Its matrix elements [as in Eq.
(8)] can be found via the R states which diagonal-
ize it.

The important feature of the above explanation
is the need for off-diagonal elements of H,„,& in
k space. If one tries to make use of a Heisen-
berg-type Hamiltonian [e.g. , Eq. (5)] with no off-
diagonal elements, one finds an M4~'2~ of order
1/N, which is obviously meaningless.
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Some interesting possibilities concerning future
experiments present themselves. If x, is large
enough and the temperature low enough, the Fer-
mi fluid of the second layer may approach degen-
eracy which will limit the scattering from k to k'
and may give a characteristic temperature depen-
dence to the process. However, for large x„ef-
fects of order higher in x, than the linear ones
considered here may also become important. T2
may also show the effects of second-layer solidi-
fication as the third layer begins to form. These
effects will be studied theoretically in future
work.
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The temperature variation of the superfluid density has been measured for He films ad-
sorbed on porous Vycor glass. Films with transition temperatures ranging from 0.1 to
1.5 K were studied. Apart from a small rounding onthe order of 5&& 10 Tc, the superfluid
density of these films follows a power law near the transition similar to bulk helium.

Experimental studies of the superfluid transi-
tion in thin films of adsorbed 4He atoms have
promised to provide an excellent opportunity to
observe the influence of size and dimensionality
on a phase transition. The ease with which the
film thickness can be altered and the wide range
of substrates of varying topology and surface con-
dition should make the helium film an extremely
versatile system. Unfortunately, until recently
there have been few experiments with the neces-
sary precision required for critical-point studies.

In fact, the nature of the superfluid phase transi-
tion in thin 4He films has remained an open and
controversia, l question. ' '

The principal difficulty has been the lack of ex-
perimental probes of sufficient sensitivity to ex-
amine the superfluid properties in the immediate
vicinity of the superfluid onset or transition tem-
perature. Prior to the present work, the only
method which provided a measure of the super-
fluid mass through the region of the transition
was the quartz microbalance technique developed
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