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A magnetic field in a laser-irradiated plasma is shown to have an important effect on
the resonant absorption, of the laser radiation normally incident on the inhomogeneous
plasma. For typical paramaters in laser-fusion experiments, the absorption coefficient
is above 50~j&, with n= ir (&u /cu) (Lcu/c} / between 1.5 and 10 and a maximum of - 70ro is
achieved for v=4.

In laser-pellet fusion experiments, a magnetic
field of a few megagauss is generated near the
critical surface by a variety of sources such as
Vn & V T, ponderomotive force, etc. ' ' This self-
generated magnetic field has been observed ex-
perimentally ' and in computer simulations. Be-
cause the magnetized plasma can support an up-
per hybrid wave, linear conversion of the laser
radiation into this wave constitutes an anomalous
absorption which has also been explored in nu-
merical simulations. ' In this Letter we present
an analytic theory of linear wave transformation
whereby the normally incident laser radiation is
converted into an upper hybrid wave at the reso-
nance layer. Significant absorption with absorp-
tion coefficient R 10% is attained for the parame-
ter n = m'(ro, /ro)'(Lco/c)'l' in the range 0.2 ( n ( 75.
Here n/n' is the square of the ratio of the dis-
tance between the cutoff and the resonance layers
x, = L&u, /ro and the scale of variation of the elec-
tromagnetic wave near the cutoff x,~ = (Lc'/uP)' ',
L is the density scale length, ro, =eB/mc, and &o

is the laser frequency. Absorption of 67% is
achieved for n=4 and a broad maximum (&50%)
absorption coefficient is found for typical param-
eters in laser-fusion experiments, i.e., 1.5s e
s 10.

It is well known that whenever an electromag-
netic wave has a singularity near the point where
the dielectric function for eleetrostatie waves
vanishes, the electromagnetic wave can be con-
verted into an electrostatic wave and anomalous
absorption of the electromagnetic wave energy
takes place with the generation of large-amplitude
electrostatic waves. In an unmagnetized, inhomo-
geneous plasma, an obliquely incident electro-

magnetic wave with polarization in the plane of
incidence can drive a density oscillation, because
of the component of the electric field along the
density gradient, giving rise to a nonvanishing
V. (nv„), where v„=-eE,/imago+ c.c. At the crit-
ical density, where &o~(x) = ro, re~ = (4iine'/m)'/',
the plasma wave is resonantly driven by the elec-
tromagnetic wave tunneling through the reflection
point (cutoff). ' " Piliya' has given a very ele-
gant analysis of this process. Because of the
self-generated magnetic field in laser-produced
plasmas, two new features are introduced into
this process of resonant absorption. First, the
resonant frequency is now the upper hybrid fre-
quency &o~ =(ra~'+ro, ')' ', instead of the plasma
frequency ~~; second, the Lorentz force provides
coupling between the electromagnetic and elec-
trostatic waves so that, even for normal inci-
dence, mode conversion into an upper hybrid
wave takes place and significant absorption of the
incident laser energy results. This upper-hybrid-
wave conversion has been experimentally studied
by Dreicer. "

In the present Letter we have investigated the
wave conversion of an extraordinary mode in a
magnetoplasma around the point of upper hybrid
resonance taking thermal effects into account.
For the sake of mathematical convenience, the
direction of wave propagation is taken along the
density gradient, perpendicular to the magnetic
field. This well-known problem was first studied
theoretically by Budden" and recently re-exam-
ined by White and Chen, "both using the cold-
plasma approximation. To render the electro-
magnetic wave equation in the form of a Whittaker
equation, they chose a very specific density pro-
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file of the form tanh(x/L) (shown in Fig. 14 of Ref.
15). This density profile allows finite transmis-
sion and is not realistic for the case of the laser-
produced plasmas, particularly for relatively
weak magnetic fields, i.e., for u&, /&u& 0.1 where
the cutoff and the resonance surfaces occurring
at the same density. Here we consider the more
realistic case of a plasma with linear density pro-
file, n(x) = n, (1+x/L) immersed in a uniform
magnetic field. Thermal convection of the upper
hybrid wave is also taken into account. The ab-
sorption coefficient is found to be substantially
higher than that previously obtained from the

cold-plasma model with Budden's profile, with a
maximum more than two times higher. The max-
imum absorption coefficient is also about bvice
the value found for obliquely incident radiation on
unmagnetized plasmas.

We consider the propagation of an extraordi-
nary mode in a collisionless magnetoplasma in
the direction of the density gradient, the x axis.
The static magnetic field is aligned along the z
axis and, therefore, the electric vector of the
wave is contained in the x-y plane. Using the
equations of motion and continuity, and the wave
equation, we obtain the following equations for
the field components:

where v, „=(kBT,/m)'~2. In writing Eq. (2) we have assumed v, „'&u, 'v~'/c'(aP —&a, ')'«1 which is satis-
fied for laser fusion parameters.

We specify the density profile such that x = 0 corresponds to the upper hybrid resonance where
= ~' —~, ' and the density varies linearly with x, i.e., co~'(x) = (aP —~, ')(1+x/L). Equations (1) and (2)
then become, respectively,

2' E„=z~

' ———E =-i~ —
~
1+—

Bx CL (d C ( L QP-(d Bx (4)

From Eq. (3), we find that, well away from the resonance layer, thermal corrections are not impor-
tant and E„can be written as a superposition of particular solutions corresponding to the transverse
wave and to the outgoing electrostatic wave

(6)

B'E,/Bx'+ ((u'/c') e„E,= 0

E„=—i((u, /(o)[( x+L)/x]E„+rP„. (5)
Here E„is a linear combination of the incoming and outgoing electromagnetic waves E„=E„+(E,
and E„ is the WKB solution of the homogeneous equation found by setting the right-hand side of Eq. (3)
equal to zero, i.e.,

E„-[- (x+L)/x]'~' exp(i((u' —(u, ')'~'/v ~f "[-x/(x+ I ))
'~' dxi.

Equation (6) is valid for )x/L~ &(v, z/Lur) ~'=(Xo/L)' ', where XD =v, „/co~(0). E, are the WKB solutions
of the electromagnetic wave equation obtained from Eq. (4) by substituting the first term on the right-
hand side of Eq. (5) into Eq. (4) and neglecting thermal corrections:

E„~„'"exp[+ i(~/c) f e„"dx], (8)

where e, =[(ru, '/&u')(1+L/x)' —1](x/L). The turning point for the electromagnetic wave is x/L=- ~,/~
(e„=0) and, therefore, the solution (8) is not valid over a width bx = 5(&u, /&v)' '(c/&u) around the turning
point.

These faraway solutions are now used as the boundary conditions for the solutions of Eqs. (3) and (4)
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in the resonance region. In order to solve Eq. (3) around x=0, we assume that the right-hand side is
constant, because the scale length of variation of the electromagnetic wave is much longer than that of
the upper hybrid wave there. Hence,

s E /sx' —x'E~=x~, P(0);

P(0) =i(co./u))[((u'- (u, ')/v, „'][E,(0) —v, „'/((u'- &u, ')8'E,/Sx ~,],
and x is normalized to the scale of variation of the electrostatic field x'=x/x, x„=[Lv,h'/(aP —~,')]' '.
The solution of Eq. (9) may be written as

E„=x„'P(0)Y(x'), (10)

where Y(x') = —if exp[-i(t x' +i'/3]dt. In order to match the near-field solution (10) with the far-field
0

solution (6) we expand Y(x') for —x'» 1 as

Y(x') —(- x') ' '1T' 'eKp( Z[r-/4+ —,
' (- x')' ']) —1/x'

and compare with Eq. (5) to get q-P(0)m'~'x„'(L/x„)'~'exp(- iv /4). Equation (11) is valid for Ix/L~ «1
and the assumption of constant E, is valid for ~x/L~ ar, /tu Th. e latter assumption is in compliance with
the condition —x'» 1 which requires x„«L&u,/&u.

In order to determine E„(0)we need to solve Eq. (4) in the resonance region. On using Eq. (10), Eq.
(5) takes the form

8'E, /&x"' —x"E,= x, 'Q(x', ); (12)

Q(x') = —i ((u, (ujc')x„'P (0)[Y(x') —[v,„'/((u' —(u, ')x '][1+x' Y(x')]},

and x is normalized to the scale of variation of the electromagnetic field x"=x/x, , x, = (Lc'/aP)'~'.
The general solution of Eq (12).may be written as

E,= C,Ai(x") + C,Bi(x")—(x,~'/W[Ai, Bi])[Ai(x")1 Bi(x")Q(x')dx"- Bi(x")f Ai(x")Q(x') dx"], (13)

where Ai and Bi are the Airy functions and W[Ai, Bi] =AiBi' —BiAi'=v '. For E„to be well behaved at
x"-+~, C, must be zero. Also, since x, »x, Ai(x") is a slowly varying function of x as compared
to Y(x') and Q(x'), hence,

E,(0) = C,Ai(0) —mx, 'Ai(0)Bi(0)J Q(x') dx", (14)

or

E„(0)= C,Ai(0)//1 —iw'x, x„'((u, '/c')[((u' —(u, ')/v, „']Ai(0)Bi(0)j,

where 1 I'(x')dx"= —im /x,
Now, for -x"» 1, we may write the asymptotic form of E„using Eqs. (13) and (14), as

E,-C (-x") ' exp[-i[m/4+-(-x") ]]+C (-x") ' 'exp(i[s/4+-, '(-x")' ']j,
where C, =m ' '(+ C,/2i+[E, (0) —C,Ai(0)]/2Bi(0)]. The reflection coefficient of the electromagnetic
wave is given by

(15)

(16)g =([I—o.Ai (0)] +n Ai (0)Bi (0))/([1+nAi2(0)]2+ u Aj (0)Bi (0)]

where n =w'(~, /ao)'(L~/c)'~'=m'xo'/x, '. Using Eq. (16), the absorption coefficient (or conversion co-
efficient) of the electromagnetic wave can be written as

A=4nAi'(0)/([1+nAi (0)] + n Ai (0)Bi'(0)] (17)

which is valid for x„/L« ~,j~. A attains a maximum of -0.7 for n =4. The large values of the ab-

sorption coefficient are due to thermal effects which cause (i) resonance broadening and (ii) convection

of the energy of the electrostatic wave away from the resonance region. The variation of A with a is
displayed in Fig. 1.

The coefficient of anomalous absorption of a magnetized plasma for a laser beam depends on xp and
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get o. -2.9 or, A-0.65.
The amplitude of the electrostatic wave at the

resonance layer is, from Eq. (10),

E„(0)
-I

IO =i x„'(&o,/&o)[(&u' —~,')/~, „']F(0)E,(0). (18)
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FIG. 1. Variation of the absorption coefficient of the
electromagnetic wave with the parameter n=—n (&u, /&u)

x (Z.~/ )4c~'.

through o, =g (u /K) (L(d/c) . As A lncreas
es the coefficient of anomalous absorption first
increases, attains a maximum, and then decreas-
es monotonically. For very large values of a.,
i.e., large density scale length, the separation
between the reflection and the resonance layers
becomes too large for the electromagnetic field
to tunnel through the evanescent region and,
therefore, the wave conversion process is di-
minished. For very small values of n, the mag-
netic field, which provides the coupling, is small
and again, the absorption is reduced. It should
be mentioned that in the ease of Budden's profile
the density scale length in the resonance region
is effectively larger than in the ease of a linear
profile and, therefore, the absorption coefficient
for Budden's profile would be less than that for
the linear profile for e& 4.

For realistic plasma parameters, considerable
absorption of laser energy (up to -70%) may be
obtained, e.g. , for a CO, laser (10.6 p, m) in a
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