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The second-quantized Coulomb-gauge HamQtonian for any nonrelativistic system of
fermions minimally coupled to non-Abelian gauge fields is derived by performing succes-
sive non-Abelian Foldy-Wouthuysen transformations. In this general formalism, a de-
tailed analysis is made of threshold ferrnion-antifermion bound states in the weak-cou-
pling limit and the form of the two-loop nonrelativistic Bethe-Salpeter kernel is deter-
mined. This kernel gives a static potential independent of the fermion mass, but only
for singlet states of the gauge group.

The nonrelativistic limit of the strong interactions may be sufficiently simple to give a more tracta-
ble methematical description than the fully relativistic theory. Furthermore, the phenomenological
successes of nonrelativistic potential models' in describing the J/g family of mesons provide strong
evidence that there exist physical processes dominated by the nonrelativistic strong interactions. This
Letter is a first attempt to develop a consistent general formalism for systems with large quark mass-
es, or, more generally, for any system of nonrelativistic fermions. The dynamical model is that of
massless non-Abelian gauge fields minimally coupled to fermions (quantum chromodynamics). As an
example of the usefulness of this formalism, fermion-antifermion bound states are discussed in per-
turbation theory through two loops.

The Lagrangian in first-order form is

Fermions are in the fundamental representation of the group. The natural gauge condition for nonrela-
tivistic systems is the radiation gauge, V A'= 0, as used by Sehwinger, ' who first quantized this mod-
el. Also, the first-order formalism is advantageous since it does not possess any ghosts in the radia-
tion gauge. Imposing this gauge and transforming to the Hamiltonian gives

8= t dsx[ —,(E' ~ E'+B' ~ 8')+ g~( i 5.'7+ p—m)( —g(tnt'( A'+ ~(&y, ) (&q,)j, (2)

where E' (v E'=0) is the conjugate variable to A', B,'= —,'e...E,.„', and . y, is the non-Abelian generali-
zation of the Coulomb potential, @,= f d'y 0"(x,y)j,o(y). D"(x, y) is an integral operator defined by

[vs5„+gf„,A~ OJD"(x, y) = b.
"5''(x —y) (3)

and j. (x) is the non-Abelian charge density given by

j.'(x) =sf.&. E& A. +gg "t'0' (4)

Q, = Jd'xj, o(x) are the non-Abelian charges, generators of the gauge group. To proceed to the nonrela-
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tivistic limit the Hamiltonian, Eq. (2), is subjected to a succession of non-Abelian Foldy-Wouthuysen
transformations' to obtain the formal rn ' expansion of EI through order m '. The transformed Hamil-
tonian is

H'=m Jd x g~(x)p((x)+ fd'x( —,'[E E +8 8 J

+ m ' (d'x ,'[y—'(x)p(i V +gt'A')'q(x) + g

where D„(x, y) = [(V'+gA V) ']„. The non-Abeli-
an static Coulomb interaction

J d'xd'y d'z Lj,'(x)D„(x, y)V, 'D„(~,y)j,'(z)J

has a universal form [j,'(x) depending on the type
of particle interacting with the gauge fields. J

However, the formal expansion in Eq. (5) may
fail even if external momenta are restricted to
nonrelativistic values since loop integrals could
be dominated by ultraviolet regions of integration
in such a way as to invalidate the m ' expansion.
The absence of such behavior in suitably renor-
malized matrix elements is guaranteed, at least
within perturbation theory, by the fo11owing theo-
rem, ' an extension of the Appelquist-Carrazone
theorem: For any renormalized Green's func-
tion in which all external fermion momenta are
in the nonrelativistic domain and in which exter-
nal gluon momenta are small compared to the fer
mion mass, fermion pair creation is negligible,
fermions couple only to Coulomb propagators,
and all momentum transfers from fermion lines
are effectively small; that is, loops involving
these momenta are infrared dominated, and large
contributions come only from the region in mo-
mentum space ~ pm (p= v/c). Therefore, in the
m ' expansion, terms dropped will contribute in
any order of perturbation theory a. relative amoun
of order p.

The Hamiltonian in Eq. (5) is the starting point
for a nonrelativistic calculation of threshold fer-
mion-antifermion singlet bound states. Their
threshold character' is imposed by requiring that
the binding energy is the same order of magni-
tude as the fermion kinetic energy; that is, P'/
2m - p'm. The self-consistency of this require-
ment must be checked by explicit calculations.
The nonrelativistic kernel, which is the Fourier
transform of the nonrelativistic Schrodinger po-
tential term if the kernel has a static limit, con-
sists of two-fermion irreducible graphs, initial-
state self-energy corrections, and parts of two-
fermion reducible graphs which are not iterations
of the other two types of contributions to the ker-
nel. The existence of this last type of contribu-
tion is seen by considering iterations of the fully
relativistic kernel, which does not contain two-

1d'y d'z j,'(x)D„(x, y) V,'O„(x, y)j,'(z))

~(x)pogt'y(x). 8,J (5)

where 7;=Q, t't', N is the dimension of the funda-
mental representation of the group, and the diag-
onal spin indices are suppressed. g'( —t) is the
effective coupling constant at —t for a pure Yang-
Mills theory. To this order, coupling-constant

fermion reducible graphs. Since there may be
terms in the nonrelativistic limit of iterations of
this full kernel not contained in iterations of the
nonrelativistic kernel, any such term' must be
considered part of the nonrelativistic kernel it-
self. If AT is the time scale over which the ker-
nel acts, and e —p'm is a typical amount the fer-
mions are off shell in the bound state, then an in-
stantaneous potential is obtained when 4T «e ',
that is, the kernel must "see" the quarks as free
and essentially at rest. Therefore, to obtain a
static limit, dominant values of the loop momen-
ta must be large compared to e (but small com-
pared to m), so that e may be set to zero in inter-
mediate energy denominators of old-fashioned
perturbation theory. This requirement is satis-
fied explicitly for the sum of graphs through two
loops, although not true graph by graph.

The appropriate kinematic region of the kerne1
is p, '-m~, t, and s —4m'all of order p mz«m'
(s and t are the Mandelstam variables and f P,.'j
are the external fermion momenta). In lowest-
order perturbation theory the only contribution
to the kernel is from a single Coulomb exchange.
The initial and final states are assumed to be
singlet states with respect to the internal sym-
metry.

At the one-loop level, only the two graphs
shown in Fig. 1 contribute. The dashed lines rep-
resent instantaneous Coulomb exchanges and all
graphs are written in old-fashioned perturbation
theory with time increasing from left to right. In
first-order form, the vector-meson loop in Fig.
1(b) represents the sum of two contributions; the
first is an A' propagator and an E' propagator,
and the second is two mixed A'-E' propagators.
Other time orderings must be included where nec-
essary. These graphs in Fig. 1 add to give the
following known result' for the kernel to one loop:
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(b)
(c)

FIG, 1, One-loop contribution to the nonrelativistic
kernel.

renormalization is due entirely to Coulomb-prop-
agator corrections which nonrelativistically in-
volve only the Yang-Mills part of the theory. Al-
so the fermion self-energy renormalization and
the fermion-Coulomb vertex renormalization are
exactly equal but this strict equality fails in high-
er orders. A precise general statement is given
below.

In two loops, there are graphs which contribute
to the kernel in addition to the Coulomb-propaga-
tor corrections which give the two-loop contribu-
tion to the Yang-Mills p function expressing
g (- t) in terms of g'(p) (p, is the renormalization
point for the Yang-Mills fields, chosen such that

p &m). These additional graphs are shown in Fig.
2. The initial and final states are off energy
shell by amounts e, and e„respectively, with
e„e2 —

P n", . Similar graphs occur with the fer-

(e)

(g)

I
I+ q-2
I

I
I

FIG. 2. All two-loop contributions to the nonrela-
tivistic kernel except Coulomb-line corrections.

mion and antifermion lines interchanged. Figure
2(f) is an external fermion self-energy correc-
tion, which, on one side, is included in the ker-
nel. Figure 2(g) represents a more subtle con-
tribution, which is two-fermion reducible. It is
the combination of a nonrelativistically negligible
part of the one-loop kernel and the single Cou-
lomb exchange. To expose this contribution con-

r

sider the energy denominator (in old-fashioned
perturbation theory in Fig. 1(b):

(7)

The second term on the right-hand side is a rela-
tivistic correction (e, - p m, not pm) correctly
ignored at the one-loop level. However, in graph
2(g) the energy denominator of the two-fermion
intermediate state is e, ', and therefore the sec-
ond term in Eq. (7) gives a nonnegligible contri-
bution to the two-loop nonrelativistie kernel. The
X on the fermion line indicates that the second
term in Eq. (7) is to be used for the appropriate
energy denominator. This term, therefore, is
not part of the iteration of the nonrelativistic ker-
nel, which involves only the first term on the
right-hand side of Eq. (7), and moreover, it is of
the same order in P as the other graphs in Fig. 2.

The logarithmic dependence on the fermion re-
normalization point of graph 2(f), a self-energy
correction, cancels with the renormalization
point dependence of the vertex correction graphs
2(a) and 2(b). The necessity of this cancellation
follows from the fact that as q-0 the bare instan-
taneous part of the Coulomb propagator couples
only to the charge operator I see Eq. (5)]. More-
over, charge conservation implies, ' in a manner

analogous to quantum electrodynamics, that the
fermion self-energy renormalization is exactly
equal to the renormalization of the fermion-
charge vertex defined by the fermion-Coulomb
(proper) vertex with the external instantaneous
Coulomb line, at zero momentum, coupled only
to j, . The above cancellation is an explicit ex-
ample of this Ward identity in two loops. Further-
more, the Ward identity implies' that the diver-
gent part of the fermion-Coulomb vertex is equal
to the divergent part of the fermion self-energy.
No unrenormalized vertex graph which is not part
of the fermion-charge vertex will contain primi-
tive divergences, as, for example, the unrenor-
malized finite graph 2(c). Also, coupling-con-
stant renormalization results only from Coulomb-
propagator corrections, which, nonrelativistical-
ly, are in the pure Yang-Mills sector. Further-
more, there is a cancellation of the infrared e
logarithmic-dependent terms between graphs 2(a)
and 2(d), and also between graphs 2(f) and 2(g).
In each pair, what distinguishes the two graphs
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is whether the Coulomb line is absorbed by the
fermion or by the antifermion. In the infrared
limit of this Coulomb momentum, which produces
the infrared logarithmic dependencies, the sum
of the distinguished Coulomb lines in each of the
two graphs measures the total charge in the ini-
tial state, which is zero since the initial state is
a singlet. Adding all the graphs in Fig. 2 gives
for the exact form of the kernel through two loops

lC= TN 1+bc'
)2 I 2 2 16s2

(c,5„=f„„f„„),where b is a numerical constant.
This kernel represents a static nonrelativistic
potential which is valid in the infinite-quark-mass
limit. Note that the static potential in the nonrel-
ativistic limit through two loops is obtained if,
and only if, the initial and final states are sin-
glets. At the three-loop level, there are graphs
in which inc dependence arises from vanishing
transverse gluon momentum [e.g. , the graph ob-
tained from Fig. 2(e) by adding, in the middle of
the graph, a bare Coulomb exchange between the
fermion and antifermion]. The cancellation of this
type of dependence is still unresolved. However,
the simplicity of Eq. (8) and the fact that the stat-
ic form depends only on charge conservation sug-
gest that to all orders of perturbation theory
there is a mell-defined static limit for the kernel
in singlet states.

In conclusion, even though the weak-coupling
nonrelativistic kernel has qualitatively the same
form as in quantum electrodynamics through two
loops, this new result is important for several
reasons. It illustrates the usefulness of the non-
relativistic formalism, by making obvious the
physical bases of the results. The kernel possess-
es a well-defined nonrelativistic limit free of
divergences, in which all logarithmic dependence
on e, and e, explicitly has canceled, but only for
group singlet states. The coupling constant which
appears is the effective Yang-Mills coupling (de-
fined in the Coulomb gauge) at a momentum value
equal to the momentum transfer, so that it is the
effective coupling constant relevant for formation
of the bound state. Treatment of baryons is simi-

lar to the above analysis and does not present any
new difficulties. In addition, there are many pos-
sibilities for nonperturbative approaches. For
example, it may be worthwhile to consider the
static Coulomb energy term directly or to try to
find semiclassical solutions for the Hamiltonian
in Eq. (5).
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