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Effective Field of a Dipole in Polarizable Fluids
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The reaction field generated by a point dipole in a polarizable medium is considerably
underestimated and the screening of the dipolar field ls considerably overestimated by the
classical continuum theory. The importance of the induced-dipole-induced-dipole con-
tribution, particularly in reducing the screenI~g in a normal liquid, is demonstrated by
molecular-dynamics computer calculations.

Many physical situations require knowledge of
the effective field at a dipole in a polarizable me-
dium; for example, the difference between the di-
pole moment of a molecule in a fluid and in vac-
uum leads to an absorption frequency shift of a
polar molecule when placed in solution. ' The
standard way to estimate this field is through the
classical continuum theory of Onsager, ' which
embeds a point dipole in a spherical cavity sur-
rounded by a homogeneous medium characterized
by a dielectric constant. From this model the po-
larization which the dipole induces in its sur-
roundings leads to a readily calculable field at
the center called the reaction field and to a
screened dipole field in the medium. It is the
subject of this Letter to calculate this reaction
fie1d by rigorous statistical-mechanical methods
and evaluate the accuracy of the continuum ap-
proximation. Of equal importance is a compari-
son of the screening of the dipole field by the in-
duced polarization for large distances from the
central dipole.

The test has been carried out for the simplest
I

possible model in which a permanent point dipole
p. o, is surrounded by particles that have no per-
manent dipoles but only a point polarizability, n;
in addition, all particles interact with the same
short-ranged Lennard- Jones potential. The sta-
tistical-mechanical formulation of the effective
electric field is straightforward, ' and the field at
particle j, at some distance away from the cen-
tral dipole (labeled as 1), consists of two parts,
the direct contribution from the permanent dipole
and the induced contribution via all other parti-
cles k:

&; =Tii'9 o+ Z T s 'pa ~

where the induced dipole p~= nE~ and T is the di-
pole-dipole tensor VV(1/r). The reaction field or
the field at the central dipole consists, of course,
only of the induced part

Ei=ZTi, p, (2)
p/1

These equations can be solved iteratively, lead-
ing to an expansion in powers of a:

4pgT ~ T --—pT (6)

E~ = Tii'P, o+ & Q T(~'T~i' lto+ O(Q ) i
0&1,j

Ei =~ z ly'TI i'P0+ ii z z il Tat fi'&0+
g& 1 P& 1 j& 1,&

These expressions have been evaluated analytical-
ly for hard spheres at low density to the order in
a explicitly given. The linear term in the reac-
tion field is easily reduced to' o.Ap, „where

X=8np )dr g(r)/r',
with g(r) the radial distribution function and p the
number density. For low-density hard spheres
of diameter o, one gets A=8itp/3a . The linear
screening term assumes the general asymptotic
form

(4)

which is exact for low-density hard spheres when
y»~ 2o. The quadratic term in the reaction field
is also calculable' so that

E,.=(1-4mpot/3)T~, ,li+(On') if r„.~ 2o (7)

E, = ii, (1 —5mpe/8)+ O(n').i

These low-density hard-sphere results should
be directly comparable to the continuum-theory
results since in both cases the structure of the
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fluid is ignored. Thus, the Onsager model when

applied to the present system predicts'

E =3T~i' po/(2E+ 1)

E, =2(e —1)pJa'(2m+1), (10)

where a is the cavity radius. Substitution of the
dielectric constant ~ by the polarizability n, as
given to high precision' by the Clausius-Mosotti
equation

(e —1)/(e+ 2) = 4' n/3 + O(n'),

leads to

E, = (1 —8mpo. /3)T, , go+ (oP) (12)

E, = (8wpo. p, ,/3 cP)(l —4mpot/3) + O(o.'), (13)

where the O(n') corrections to the Clausius-Mo-
sotti equation do not affect the terms given here.
Thus, the continuum theory is only accurate to
order n for the reaction field when a is identified
with o. To higher order, the continuum theory
predicts a reaction field which is too small. On

the other hand, the continuum theory overesti-
mates by a factor of 2 the first-order screening
term.

These rather large quantitative shortcomings
of the continuum model are confirmed by the, in
principle exact, molecular-dynamics calculations
under various-including normal —liquid condi-
tions. The equations of motion were solved in-
cluding the dipole forces, ' although for realistic
values of the dipole moment and even for the larg-
est value of the polarizability used, the dipole

forces did not significantly affect the structure of
the fluid. (See the radial distribution functions
presented below as evidence. ) Note also that
since the dipole-induced-dipole forces fall off
faster than 1/r', this calculation is not plagued
by boundary-condition problems due to long-range
forces. Hence periodic-boundary conditions were
employed for the dynamics with the modification
that the image particles have no dipole moment.
The polarization was confined to the largest
sphere that could be contained within the periodic
box around the central permanent dipole, which
was arbitrarily fixed along the ~ axis. At each
time step the self-consistent electric field was
calculated iteratively starting from the field and
polarization of the previous step. Convergence
was assumed when the electric field energy was
constant to better than 1 part in 104. The first-
order field E' is obtained in a separate calcula-
tion by a single iteration starting from the un-
screened field for comparison with the theory.
The problem was run on a parallel-processing
computer, CDC STAR, in vector mode, for which
this kind of calculation is particularly well suited,
with an accuracy in the energy to better than 1
part in 10~.

The results for the reaction field at several
densities and temperatures are summarized in
Table I. Evaluation of the integral' in Eil. (5)
leads to agreement with the term linear in n, E,',
and serves as an independent verification of the
numerical procedure. The new results are given
by the sum of all further iterations, labeled E, .
They lead to a decrease of the reaction field by
about 10% for a liquid like xenon (o'./o' =0.06) at
the normal boiling point. As expected, these

TABLE I. Results for the reaction field. In all calculations 108 parti-
cles were used except the two cases marked with an asterisk, where 256
particles were used. Runs were typically 40000 time steps long. The
time step is the same as in the usual Lennard-Jones calculation. Error
estimates are typically 1 in the last significant figure given. The central
dipole had a value of po/(eL&o ) '. =1, where ez& is the depth of the inter-
molecular potential and 0 is the distance at which the intermolecular po-
tential crosses the zero axis.

pa. ao Oe

0,84
0 84*
0.84*
0.84
0.70
0.20

0.80
0.67
0,72
0.70
1.97
2.01

0.14
0.10
0.05
0.02
0.10
0.10

3.94
2.64
1.64
1.23
2.24
1.27

1.66 0.256

0.58 0.051
0.23 0.009

0.24 0.007

0.78
0.77
0.83
0.84
0.78
0.87

0.87
0.83
0.86
0.85
0.82
0.89

0.98
0,98
0.98
0.98
0.96
0.96
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higher-order contributions become smaller as
n and the density become smaller. The value of
ao given in Table I signifies the radius of the
cavity that has to be introduced in the Onsager
expression for the reaction field in order to re-
produce the computer results. Similarly a is
such a radius for a recently proposed alternative
theory. ' These very similar values must be com-
pared to the considerably larger values of the
equivalent hard-sphere diameter, 0„ for the Len-
nard- Jones potential that one would have thought
appropriate, since these can be used to describe
accurately the thermodynamic px operties io Since
these diameters are cubed, the continuum theory
can be seen to underestimate the reaction field
considerably.

The separate contributions to the screening are
shown in Fig. 1. The first-order contribution E,'
is shown as projected in the fixed direction of the
permanent dipole

E,'(r) =JE,~(r)P (cose)dQ. (14)

The first-order contribution is normalized by its
previously established asymptotic limit at large
separation —L5(4&p&pg3r ), where the f factor
derives from the projection. This first-order
normalized screening, S'(r), is shown in the low-
er part of Fig. 1 to approach the correct theore-
tical limit at large distances, indicating that the
machine calculations have been carried out to dis-

1.0

0.8—

tances beyond which the structure of the fluid can
be ignored. Furthermore, at small distances
between pd.iticle j and the central dipole 1 the
screening, as expected, vanishes. The screening
contribution of all higher terms beyond the first
S"(r), again projected and normalized by the same
factor as S'(r), is shown in the upper part of Fig.
1. The induced-dipole-induced-dipole contribu-
tions, S (r), are seen always to decrease the
screening, increasingly so for larger n values.
In the case of liquid xenon, the decrease amounts
to about 20% at large distances.

The effective screening, from which an effec-
tive dielectric constant as a function of distance
from the central dipole could be readily deduced,
is shown in Fig. 2. The effective screening S (r)
is again the projected dipolar part of E,(r) but
this time normalized by the projected unscreened
dipole field 4pg5r'. The screening factors of the
continuum theory are shown by the dashed lines
for the two different values of the polarizability
arid are seen to predict much too high a screen-
ing. At the lever value of the polarizability, this
is primarily due to the factor-of-2 discrepancy
pointed out above. However, for the large polar-
izability value, the higher-order induced terms
also make a significant contribution so that the
resulting dipolar field is nearly unscreened. In
fact, at sufficiently high values of the polariz-
ability (a/a & 0.2), these higher-order terms
lead to a "polarization catastrophe" or spontane-
ous polarization of the surroundings. Finally, it
should be noted from Fig. 2 that the effective
screening at intermediate distances shows a
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FIG. 1. The first-order screenixg contribution, $~(r),
and all higher-order contributions, 8~(z), as a function
of the reduced distance from the central dipole rlc
The conditions correspond to the first (tri~~~les), third
{circles), and fourth (squares) entries in Table I.
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FIG. 2. The effective screening factor for the dipole
field, S(r), and the radial distribution function g(r) for
the same conditions as those symbolized in Fig. 1. The
dashed-symbol lines indicate the continuum-model re-
sults,
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structure which is closely related to that of the
radial distribution function.
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A strong temperature dependence has been observed for the first time in angle-resolved
photoemission (ARP) spectra of the valence band of a crystalline solid. This spectral be-
havior confirms predictions of a model suggested by Shevchik. A controversial point in
the interpretation of ARP spectra at x-ray energies is resolved by this model. More-
over, it dictates the choice of photon energy and sample temperature for future ARP
studies of valence-band electronic structure.

Shevchik' has suggested that thermal broadening leads to a more complete sampling of the first Bril-
louin zone (BZ) in angle-resolved x-ray photoemission than would be expected from a rigorous direct-
transition model. He expressed the angle-resolved photoemission cross section as the sum of a k-con-
serving direct-transition term and an atomic term, with the relative contributions of the two being gov-
erned by the Debye-Wailer factor, which we shall write as

f =exp[-((q b,rr)')],
where q =kt -k, -k„„(k&and k, are the final and initial electron momentum and k„„ is the photon mo-
mentum) and Err is the instantaneous thermal displacement of an atom in the lattice.

The energy distribution function for photoelectrons inside a crystal is given by'

%gg B Z Eg &@F

N(EI, k&, hv) cc P Q l(E&(k&)lX plE, (k;))l'5[Et(kq) -E,.(k, ) hvj-
g~(gg )

where the summations are over the initial momentum states (k, ) in the first BZ and all occupied ener-
gy levels. If electron transport and surface transmission do not alter N significantly, an experimental
energy distribution curve (EDC) can be obtained by summing Eg. (2) over the final energy and momen-
tum states (Et and kt) allowed by the finite angular resolution of the measurement and the uncertainty
in the component of crystal momentum perpendicular to the sample surface. If we assume a tight-bind-
ing initial state and plane-wave final state, the matrix element of Eg. (2) demonstrates a temperature
dependence similar to x-ray diffuse scattering theory; i.e. ,

1&exp(i' ~ r)l& pl~, fi)&l'

icos'yf ~„(kt)(~(i-G)+[1—

~(g-G))lka~(lill'llew-

Gl')oi+ (ks~)'ltll'W2%)+ 1).
Here y is the angle between the electric field polarization vector and kt, o;, (k&) is the atomic cross sec-
section, ' G is a reciprocal-lattice vector, ks is the Boltzmann constant, and y, and y, (g) involve sums
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