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We consider models in which heavy leptons are produced in neutrino reactions and then
decay sequentially into trimuons. In all these models leptons and quarks are in the 3 or
3* representation of the gauge group SU(3) ® U(1).

The recent report™? of trimuon events in v, -in-
duced reactions with a rate of ~5X% 10™* relative
to muon production has created a great deal of in-
terest because of the possibility that these events
are caused by the production and subsequent de-
cay of a heavy charged lepton, M.»3"5 A relative
rate of 5X 10™* appears unobtainable, however, in
convéntional [SU(2)x U(1)] schemes as the authors
of Refs. 3-5 argue. The problem is twofold in
that the M~ production cross section is kinemati-
cally suppressed,®*¢ and that one needs to con-
sider the relative branching ratios of the two-
stage sequential decay of M~ into three p’s plus
neutrinos. One is led to consider extensions of
the gauge group SU(2), ® U(1) to groups in which
v, and M~ can be in the same multiplet. Alter-
natively one could attempt tc extend present had-
ronic mechanisms, but it is difficult to obtain the
desired trimuon rate by these means.’

If larger groups are considered,

o, N= iy p*X)
o(y,N-u'X)

R, (pp) =

can be increased because of a new charged inter-
mediate vector boson, W’*, which couples with
full strength to the v, M~ current. This larger
gauge group accommodates both W and W’: Since
we want v, to couple to u” via the W, and M~ via
the W’, the natural minimal gauge group is SU(3)
X U(1) with quarks and leptons in triplets. [SU(3)
is too small if we want integrally charged leptons
in triplets.] The decay scheme of M~ into a heavy
neutral lepton requires that there be a right-hand-
ed triplet (N, ,M~,1"); as well, where N, is a
neutral lepton; N, is a singlet and v, is only
left-handed so that the neutrino remains mass-
less.

In the v, -nucleus collision, the following lep-
tonic sequence occurs:

V""ML-" MR-"N’E.‘FIJ.L- +T}p

HR-+NL++V;‘- (1)

This seems to be in reasonable agreement®* with
the trimuon data for masses m, ~7 GeV and m y
~3.5 GeV.

The problem with this decay scheme is that if
W’ couples to ordinary quarks, the branching ra-
tio of Mg~ Ng v, relative to M~ - v, +hadrons
is very small. We find

R, (p p"u’)
Gg'?> T(M ~ Nuv) T(N = pyw)
57 (¢ sz TG1) ) s (2a)
R, (u p u*)
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where G’ is the equivalent Fermi coupling for
W’. K is a kinematic suppression factor®»%® for
M production ~5x% 1072 (it includes an extra 3 fac-
tor because #;d; couples to W, so that the had-
ron current coupling to W’ must be #zdg); A is a
three-body phase-space factor; and I'y_ -y +,/Ty
<. Form,="1, and my=3.5, one finds A =0.16,
and R, (upy) appears to be too small to fit experi-
ment.” Before turning to modifications of this
more conventional type of model, we would like
to consider a variation which we regard as an ex-
tremely promising candidate for a model of weak
and electromagnetic interactions.

The model that we wish to consider is one in
which the hadrons are in triplets and singlets,

u U c g
d ’ b ) s ’ h ’ CR.) gL? (3)
b /L a/r k/L S/r

with a discrete symmetry®® imposed so that at
stage one only » and 2 acquire masses via octet
Higgs-meson couplings. We also impose discrete
symmetries on the octet couplings to forbid any
general mixing betweend, b, s, and 2 (small mix-
ings between d and b only, and between s and &
only, may be introduced at a second stage in
which the light quarks are given mass). Triplet
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Higgs multiplets then couple cy to %, and ¢, and
g1 toug and g, generating Cabibbo angles and
masses for the ¢ and g (no charm-changing neu-
tral currents are introduced by this px_‘gcedure).
The nine gauge bosons (W*, W’*, W° W°, zZ 6 Z’,
and y) transform like (p*, K**, K*°, and K*°,
combinations of w, p, and ¢). Instead of putting
the leptons in the 3 representation, we put them
in the 3*:

u w e e

ve |, (M), | ve || ES ), 4)
M°/y \M;°/x \E°/p \E;¢
E2L07 MZLO'

The initial motivation is that this ensures that,
no matter what Higgs couplings we use, the neu-
tral-current coupling to the electron is pure vec-
tor (e v e.” +eg v ex”) and hence we have an
essentially null result for parity nonconservation
in the atomic physics experiment on Bi.!° The
fact that there is no E™ or M~ also lessens the
danger of overly large contributions to the muon
g =2 or to the rate of pu~ey. We believe these
reasons are important in the absence of sure

knowledge of the symmetry-breaking mechanisms.

Conventional charged-current weak interactions
occur via W* exchange including the high-y anom-
aly due in this case!! to the bzt current. AS=2
transitions are of normal magnitude.

In addition to the Higgs triplets necessary to
couple cy and g, we need another set with shift-
ed charges to couple E,;° and M,,° to the lepton
triplets (and induce potential mixing). For rea-

sonable values of the vacuum expectation values
of the Higgs fields, we have calculated the Z and
Z' masses and mixings and get excellent agree-
ment with experiment for neutrino inclusive and
elastic scattering off protons and for v,- (V,-) e~
scattering. The detailed fits, to be presented
elsewhere, are less sensitive to mixings than one
might expect.

Note that in our model M ,°, M,°, E,°, and E,°
are all unstable if their masses are sufficiently
large. We will focus on the situation in which M,
has a mass of =4 GeV and M,° a mass = 1.5 GeV.
Labeling by Gy’ and G° the effective Fermi-
coupling constants of W/ and W°, we have, with
appropriate'” approximate weights given paren-
thetically (X means hadronic states),

0o

by Xg (5G¢"®);
MlLo"
B BRTMaR® (Gp'?A); (5)
Lr Xg (5G¢?);
M°~
HR.HL+V;1 (W H

while M,° has only the decay mode M2° - UrXg
(neglecting M,°~ pz"E,%*). M,°is similar to
the lepton introduced as a potential explanation®®
for dimuon events except, of course, for the
presence of the decay M ,°—~M,%u*p” - pu putu X,

Turning now to the production mechanism for
M), itis v+d,—-M°+b, via W° exchange. The
b quark,!! with an estimated mass of ~5 GeV,
has a semileptonic decay mode bp—~uguv,, so
we have the following new multimuon sources:
(@) p'p” from M= p*u v, and b=X; (b) p "
from M,°— "X and by~ugu Ty () w p p*
from M,° -~ p*u"M,°, and b—~X, and from M,°
~u*uv, and br—ugk v, so that

(GO (ML = p ™M) DML = p* p v )T (bg—=ugi™v,)|.

Rv(uuu)-K<—(§> { R + P(Ml%)r(b) b } (6)
and finally (d) p pu p” u* from M,°—~ p* u"M,° and
br—~ugrk™v,. We expect the rates for (a) and (b) l representation,
to be of order 2x107%, R, (ppp)~5x%107 for G°/ y A N
Gr~0.5and R,(pupup)~5x1075, Momentum dis- K K € e
tributions also seem to be compatible with ex- oM ), e, |ET], Nuz, Neg, (7)
periment, ! though one would probably want a - - - -

M/ K/r \E/L \e/ g

mass somewhat larger than 4 GeV (e.g., ~6 GeV)
for M\° if M\° -~ p*u"M,° is to provide a large
fraction of the trimuon events with the appropri-
ate kinematics,

Turning back, for comparison to models with
M~ and E~ and leptons in the 3 rather than the 3*
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we see that the hadronic sector probably needs to
be modified by replacing u, with f5 (where ¢ is a
quark with mass =4 GeV) in order to close off
the mode M~ ~v d iy, the problem we alluded to
earlier, One the M~ is produced by W' exchange



VoLuME 39, NUMBER 5

PHYSICAL REVIEW LETTERS

1 Aucust 1977

Vy+dp—~M~ +tg, the decays leading possibly to
multimuon events are M~ - "NV, and M~ ~ vy
XN,u". By introducing some small mixing an-
gle B between M~ and py", the N, can decay in-
to two muons N~ p” pu*v, with an amplitude
proportional to sinBcosfB so that trimuons are
produced. The angle 8 must be kept small for a
variety of reasons: (a) The muon g-2 would re-
ceive an intolerably large contribution!® from the
W° one-loop diagram; (b) the neutral current in
general now has a M term proportional to
cosfBsingB so that M~ - "X becomes an impor-
tant M~ decay mode, and M~ - u~u* u” a trimuon
source (it is interesting to keep in mind the pos-
sibility that we may have neutrinoless M~ decay).

For a variety of reasons (e.g., to insure that
the u quark stays naturally light and to provide an
explanation for the high-y anomaly) one might
want to consider the case in which uj is not re-
placed by g M~ is then produced via v, +dy—~M"
+ugand N, can decay by N, — i ugzd . To reach
a value of 2X107* for R,(uu ) one needs M,°
massive (~8 GeV) and N, relatively light (~2
GeV). It is questionable, however, whether such
a light N is satisfactory.

In all these models one is essentially forced to
introduce a third triplet to accommodate the
heavy lepton 7~ observed'® at Stanford Linear Ac-
celerator Center (and additional singlets, T,,°
and possibly T, with T~ replacing 7;°).

To conclude, we have discussed two types of
SU(3) X U(1) gauge models differing by having lep-
tons in the 3* or 3 representation. For a variety
of reasons,_whictrwe have outlined, we tend to
prefer the former, but it is clearly too early to
tell.’” 7, scattering experiments would be of
great help in distinquishing the 3* model from
the 3 model (with u, replaced by ¢z) since in the
latter there is no b uy current. It will be of
great interest to have good statistics for, e.g.,

u 1" production in v, experiments, Another
significant difference is that tetramuons appear
in both models, but for the 3* model they are

p W W ut while for the 3 model they are w ™ p'u*
(since the ¢ quark will decay into a u; this model
also has the possibility of a u” u* u* mode with a
relatively low-energy p*). Finally one will clear-
ly distinguish the two models by whether or not
M~ and E~ are seen at PEP and PETRA.
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We have studied the threshold production and decay angular distribution of neutral
charmed mesons produced in ¢*e” annihilation. We find consistency with the expected
spin values of 0 and 1 for the ground and excited states D and D*, respectively. We rule
out the alternative spin assignment of 1 for the D and 0 for the D*,

We report on a study of the production and de-
cay angular distributions of neutral charmed mes-
ons! produced in e*e” annihilation at center-of -
mass energies near 4.03 GeV. Throughout this
Letter, we identify the neutral state decaying in-
to K7 and K37 at 1865 MeV/c? with the D° and the
charged state decaying into Knw at 1875 MeV/c?
with the D*.2 A study?® of the threshold recoil
spectrum against the D° and D* has provided
strong evidence for the existence of excited
charmed states: the D*°(2005) and the D**(2010).
Furthermore, this study shows that D° production
near threshold is dominated by two-body reac-
tions such as

e*e”—~D°D* or D°D*°, (1)
ete” ~D*D*O, (2)
ete"=D**D” or D*'D", (3)

where the D*° and D** decay into D%s via pion
emission® and, in the case of the D*°, by y emis-
sion. In this Letter we examine angular distribu-
tions in Reactions (1) and (2) in order to test the
three possible D, -D* spin assignments if one as-
sumes that the sum of the spins for the D and the
D* is less than 2, We show that under this as-
sumption the D is spinless, the D* has spin 1,
and their relative parity is even.?

Considerable information on the spin and parity
of the D and D* comes from a study of the D* pro-
duction and decay modes. Our observation of
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either D**—~D% or D**—7°D° produced in e*e”
—~D°D*° or D°D*° implies that the D and D* cannot
both be spinless.® Observation of D*—D7 implies
that D and D* must have even relative parity if
one meson has spin 0 and the other has spin 1.
This last observation is quite helpful for it allows
unique predictions for the production and decay
angular distributions of D—-Kr in Reaction (1) un-
der the two spin assignments which we will furth-
er consider: J,=0and J,.=1, or J,=1and J,.
=0.

We express the expected joint D° production
and decay distributions in terms of the three an-
gles 6, 0, and ¢, where © is the polar produc-
tion angle of the D° with respect to the annihila-
tion axis, and 6 and ¢ are the spherical angles of
the decay kaon in the D° helicity frame.” In the
limit of nonrelativistic D**’s, one computes from
symmetry considerations the distributions below®:

d’ «1+cos?0 (4)
dcos©dcosf do 059,
dio
dcos©dcosbdo
«sin®9(cos?¢ + cos?O siny), (5)

where Eq. (4) is for J,¥=07, J,.F=1%, and Eq.
(5) is for Jp¥=1%, J,.F=0%, We shall compare
these distributions to the data.

The present analysis is based on about 35000
hadron events produced in e*e” annihilation at



