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served fact that the spectrum obtained with HD is
simply the superposition of the spectra measured
with H, and D, is, therefore, not the result of an
accidental degeneracy. The very important con-
clusion to be drawn is that the molecular models
are not valid and that the P, and P, phases of hy-
drogen on W(001) are of atomic nature.
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We have derived a microscopic Hamiltonian that takes into account rotational-translation-
al coupling in molecular crystals. This coupling leads to an effective orientational inter-
action among nonspherical molecules. It is responsible for an anomalous behavior of the
elastic constants and of the transverse-acoustic phonons. The temperature behavior of
c44 and c&& in KCN above the 168-K phase transition is explained.

In molecular liquids it is well established that
there exists a dynamical coupling between trans-
lational and orientational modes. ' More recent-
ly, the importance of a static coupling between
translation and rotation has been realized for mo-
lecular crystals and used to explain Rayleigh-
Brillouin measurements. ' This coupling should
also be responsible for the drastic thermoelastic
anomalies (softening of elastic constants') that
have been found near some orientational phase
transitions in molecular crystals. This effect
was discovered by ultrasonic methods4 and con-
firmed by Brillouin scattering. ' It manifests it-
self also very clearly in recent neutron scatter-
ing experiments' where one finds a softening of
transverse-acoustic phonons. To our knowledge,
there exists no microscopic theory that describes
in a satisfactory way the static coupling between

translation and reorientation in solids. Also, the
experiments' ' have found so far no theoretical
explanation. The purpose of this Letter is two-
fold: First, we want to derive from a realistic
microscopic-force model a Hamiltonian that con-
tains such a static coupling. Second, we will ap-
ply this Hamiltonian to explain the experiments4 '
and to clarify the situation near the orientational
phase transition.

To be specific, our theory will be most closely
related to M(XF) compounds, say KCN, but its
generalization to other substances will be ob-
vious. In the high-temperature phase (T & T,
= 168 K), KCN has a cubic structure where the
linear (CN) ions are surrounded by an octahe-
dral cage of the K' ions. The (CN) ions assume
octahedral symmetry by reorienting among
equivalent orientations. ' At T„ there is a phase
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transition to an orthorhombic structure in which
the (CN) ions are oriented along the b axis. The
sense of the (CN) ions is not fixed at this trans-
ition.

We consider now the following model to de-
scribe the cubic phase of M(XF) compounds.
Since the sense of the (XY) ions is not relevant
here, we replace the linear (XY) ions by a
dumbbell molecule of length 2d. Each dumbbell
is surrounded by six M atoms in octahedral po-
sitions at equilibrium distance a. The two ends
of the dumbbell act as repulsive centers with re-
spect to the M atoms. The interaction is de-
scribed by the well-known Born-Mayer repulsive
overlap potential' summed over the two ends (s
=+ 1) of the dumbbell:

n, l
*(iR„-R,+i). (2)

The kinetic energy 1 is composed of two parts:

V'= Q„P„'/2m„+Q„ I,„'/2&, (3)

where P„(for r =n, l) is the linear (translational)
momentum of the xth particle and where L„ is the
angular momentum of the nth dumbbell; m„and
I denote, respectively, the mass of the Hh par-
ticle and moment of inertia of the dumbbells.

The total Hamiltonian is now given by H = T
+ V + V . Next, the potential energies V *and
V *are expanded in terms of translational dis-
placements u„(for r =n, l). Thereby we restrict
ourselves to terms of zeroth and first order in

u„ for the contributions arising from V . The

V„,o*=C, Q exp(-C, ~
R„+sd-R, '~).

s=+1

Here, R„and R, denote, respectively, the cen-
ter-of-mass positions of the nth dumbbell and of
the lth M atom. The vector +d gives the position
of the ends of the dumbbell with respect to its
center of mass; the direction of d is specified by
the polar angles (8, y). The particles r (for r=n
or I ) are allowed to vibrate around their equil-
ibrium positions X„, with center-of-mass dis-
placements u„=R„-X„. Consequently, expres-
sion (1) represents a translation- and orienta-
tion-dependent potential (labeled OT). Summing
over all pairs (n, l) and taking only nearest-
neighbor interactions (as indicated by the prime),
we write

Vor g rV or
n1

n, l

In addition, we consider a purely translational
potential

kA -kA kB 0 kB
A' A kB kB 0, (5)

0 0 B

2Q
k,A

(-2A.A kB k„

with u = 1-5 and i =x, y, z. Here the x, y, and z
directions are taken along the cubic axes of the
crystal. The coefficients A and B are functions
of the potential parameters C, and C„as well as
of d and a. The important point here is that v Y~s
is linear in both the rotational coordinates F
(or Y ) and the translations s, .

The Hamiltonian H is used to calculate the elas-
tic constants. We first calculate the displacement
susceptibility" (s (k), s, (k)) =(D '), , Here we
write (A, B) = ((A; B)), for the static limit of the
retarded Green's function ((At; B))„=-if dte
x([A (t), B(0)]). The corresponding equation of
motion reads as follow

(d((At; B)) = ([At, B])+(([At, a];B)). (7)

zeroth-order term of V ~ is proportional to cubic
harmonics of order four and six: Vo= o.P4(8, y)
+ O.',K,(8, ((((), and represents an extension of the
well-known Devonshire potential. '~ The first-
order terms are proportional to spherical har-
monics of order E =2. As far as the pure trans-
lational part V~~ is concerned, we restrict our-
selves to second-order contributions in u„. Since
we are only interested in the elastic behavior, we
use Born's long-wavelength expansion" and trans-
form all translations to the center-of-mass co-
ordinates of the unit cell. The total Hamiltonian
now reads H =H +H, where

H = E ~' ' + —,'M„(k)s;~(k)s, (k))., (4)
k, i.i

a = Z +~'m, (kgb„~(k)s, (k})
k,i,e

+ Vo(k = 0). (5)

Here, the daggar denotes Hermitian conjugation;
s;(k) is the ith component (i =x, y, z) of the cen-
ter-of-mass displacement, and s;(k) =N ' 'Q„
xexp[-ik X(n)]s;(e), where n runs over all% unit
cells; m is the total mass per unit cell and m

'

=m++m; M;,(k) arises from the second-order
term of the translational potential Vrr; p, (k) is
the translational momentum conjugate to s;(k).
In Eq. (5), the F„, with o. =1-5, represent linear
combinations of spherical harmonics Y, of order
I =2 F = Y F =P(Y +F ') I' =i(F '- Y ').

1 2 % 2 2 2 2 0 3 2 2

F, =(Y,' F, '); -and Y, = i(Y, '-+ Y, '). The coup-
ling coefficients v,. are found to be
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We apply this result twice to ((s; s)) ~, use the
commutation rules [sit, p, ] =i5;,. and [s t, s]
= [p t, p] = 0, and finally set &d = 0. We then obtain

D '=M '-iM 'v(Y, s).
Applying the same procedure to ((st; Y))~, we

find

(Y', s) =i)f"v'M ',

(8)

D = (1 + QM ') 'M, (10)

where Q = vx"v'. Knowing D, we identify the
elastic constants according to D, , =(V, /m)C, „,,
&&k„k, (where V, is the volume of the unit cell).
In the absence of coupling to rotations (v = 0), Eq.
(10) reduces to the bare elastic constants M, ,
=(V, /m)C, „,, k„k,. Using Voigt's notation for the
elastic constants and taking k =(0, 0, k), we find

from Eq. (10) that

c« = (m/V, )D»(k)/k' = c«'/(1+B "X„"), (11a)

c„=(m/V, )D„(k)/k'=c„'/(1+4A")f„"), (11b)

where A'=2aA(V, c„') ' ' and B'=2aB(V,c, ') ' '
In order to calculate X", we use the physical

picture that the interaction between rotation and

translation in Eq. (5) leads to an effective inter-
action between rotating molecules. This concept
of an effective interaction between order-param-
eter variables which is mediated by the lattice
deformations is well known in compressible Ising
models, "hydrogen in metals, "and Jahn- Teller
systems. " Using methods known from Refs. 13-

where v is the transpose of v, and (X")„&-(Y„,
I'8) is the static orientational susceptibility ma-
trix; and consequently Eq. (8) can be rewritten as

X„s=y/(T-y~); )f„"=x/(T -xy),

with 5=8" and y=4A" being eigenvalues of the
effective interaction, and T is the temperature;
x and y are defined by

x = Tr [exp(- Vo/T) Y,*Y,] /Tr exp(- Vo/T),
(14)

y = Tr [exp(- Vo/T) Y,*Y,] /Tr exp(- Vo/T).

Obviously, the temperature-dependent single-
particle effects represented by x and y, describ-
ing the molecular reorientations in the octahe-
dral potential Vo, affect drastically the tempera-
ture dependence of y". Combining Eqs. (13), and

(11a) and (11b), we find

c«=c«'(I-y5/T); c»=c»'(1 xY/T). -
We have calculated c«and c» from Eq. (15) us-

ing a=-3.15 A, d=0.6 A, C, =3.3 A ', C, =1.34
1Q erg ~44o Q. 25 x 10"dyn cm ', and e

=3.5x10"dyn cm '. We find that 6y &yx and T,
=154 K is the solution of y(T) 5= T. At T„
diverges and c44 vanishes. The values of C, and

C, are chosen to determine T, but not to yield a
best fit for c44 and cyy ~ Experiment and theory
are compared in Figs. 1 and 2. The temperature
behavior of y and x is shown in Fig. 3.

The results of this Letter are summarized as
follows: The repulsive-overlap-force model [Eq.

15, we find

Vef f —
g Q Y~t(k)C (k) Ys(k), (i2)

where C =v M 'v. Besides this interaction, the
rotating molecules experience the single-particle
Devonshire potential Vo [see Eq. (5)]. Using mo-
lecular-field theory with the potential V= V, f f
+Vo, we find
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FIG. 1. Increase of c&& with T (linear scale). Crosses,
experiment (Ref. 4); dots present theory. Units are 10~~

dyn cm

FIG. 2. Increase of c44 with T (logarithmic scale).
Crosses, experiment (Ref. 4); dots present theory.
Units are 10 dyn cm ~.
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FIG. 3. Temperature variation of single-particle sus-
ceptibilities.

(1)] leads to the octahedral Devonshire potential
and to an interaction of translations and rotations,
This interaction provides an effective coupling
between molecular reorientations and drives the
orientational phase transition. The single-par-
ticle susceptibilities x and y are crucial in deter-
mining T, and affect the temperature behavior of
the elastic constants.
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Inelastic and elastic neutron scattering have been used to study the dynamics and struc-
ture of butane (C4H&p) adsorbed on a graphitized carbon powder at 77 K. In addition to the
intramolecular vibrations found in the bulk solid, new surface vibratory modes are ob-
served. A simple model which fits the principal features of the monolayer excitation
spectrum suggests an orientation of the adsorbed butane molecule and the location and
strength of the bonds to the substrate.

It has been recognized for over a decade that
hydrogenous films provide a wide class of ad-
sorbates whose dynamical properties can be
studied by inelastic neutron scattering. ' ' Scat-
tered intensities sufficient to study the dynamics
of submonolayer films result not only from the

large incoherent cross section of hydrogen for
thermal neutrons (-80 h) but also the large-am-
plitude molecular vibrations arising from the
small atomic mass. Nevertheless, due in large
part to the heterogeneity of the substrates em-
ployed, mell-defined excitations generally have
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