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Stationary Spectrum of Strong Turbulence in Magnetized Nonuniform Plasma

Akira Hasegawa and Kunioki Mima~'
Bell Laboratorie, Mu~~ay Hill, ¹vJersey 07974

(Received 15 November 1976)

A stationary spectrum in the frequency range much below the ion cyclotron frequency
is obtained for a strongly turbulent nonuniform plasma. The cu-integrated 4 spectrum
is given by P (1+4), while the width of the frequency spectrum is proportional to
k (1+0 ) ~, where k is normalized by c~/~„. The result compares well with the recently
observed spectrum in the ATC tokamak.

In recent experiments of microwave' and CQ,
laser' scattering from collective modes at a fre-
quency range of a few hundred kHz in the ATC
tokamak, density fluctuations with interesting,
and somewhat unexpected, spectra were observed.
The frequency (cu) spectrum for a fixed value of
a vector wave number k was broad with no identi-
fiable peak other than at ~= 0. While the wave
number (k) spectrum for a fixed ~ had a relative-
ly broad peak at ikl-p, ', where p, (=c,/~„) is
an effective ion gyroradius; g, and co„are the
ion sound speed and the ion cyclotron frequency.
Dependence of the observed k spectrum on the di-
rection of R was weak; the spectral density for
the radial wave number had a structure almost
identical to that for the azimuthal wave number.

The broad co spectrum rules out the possibility
that the fluctuation can be explained by a simple
weak-turbulence theory in which a small deviation
from linear eigenmodes is assumed. ' The weak
dependency of the k spectrum on the direction of
the wave number rules out turbulence directly ex-
cited by a drift-wave instability. 4

The integrated density fluctuation n is found to
be approximately 3% of the background density;
In/n, I

=
I ep/T, I

=3 x10 ', where y is the total
fluctuating potential and T, is the electron tem-
perature. If we use this value, it can be easily
seen that, because of the mode coupling through
E xB drift, 5 the effective nonlinear frequency
shift, &u„ ln/no Ik4p, ~, becomes comparable to the
observed frequency range, w —-10 '+„..

In this Letter an attempt is made to explain
qualitatively the observed spectrum, which we
believe to be universal to magnetized, collision-
less, nonuniform plasma. This Letter has two
basic goals. One is the identification of the im-
portant nonlinear term and the derivation of a
simple nonlinear equation which is appropriate
to a general class of quasi-two-dimensional low-
frequency turbulence. The other is the solution of
the equation using the renormalized-weak-turbu-

lence technique' and comparison of the result with
the experimental data. To obtain the solution we
assume the existence of a large-amplitude long-
wavelength perturbation (k «p, '). The turbu-
lence in the short-wavelength region (k-p, ') is
maintained by the scattering due to the long-
wavelength mode. We derive the width of the u&

spectrum as a function of Ik I as well as the re-

integrated I'k
I spectrum for the wave number k

in the direction perpendicular to the ambient
magnetic field.

Let us first derive the nonlinear equation. For
illustrative purposes, we assume that the elec-
tron temperature is reasonably larger than the
ion temperature and use a cold-ion approxima-
tion. ' The model equation that we use is the equa-
tion of continuity for ions in which the parallel
ion inertia is neglected'.

(en/Bt) + V ~ [no(vs+ v~)] = 0,

where V'~ is the divergence operator in the direc-
tion perpendicular to the magnetic field Bo, v~,
and v~ are E &B and polarization drifts given,
respectively, by

vs= (- V~@xB,)/B, ',

1 8
vp= ~

——Vj.q —(v@' V~)V~+
ci 0-

n and n, are the perturbed and unperturbed (but
nonuniform) density, and &u„ is the ion cyclotron
frequency.

Many authors assume an ideal two-dimensional
situation here, 9 and obtain n using Poisson's equa-
tion together with another two-dimensional elec-
tron equation. We believe, however, that in the
presence of a weak shear in the magnetic field,
such an assumption is invalid. A slow variation
of @ in the parallel direction allows the electrons
to obey the Boltzmann distribution. The quasi-
neutrality condition gives, then,

n/n, = erp/T, .
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q(x, t) = 2+r[yr(t)e'" "+'c.c.],

where k is ki, Eqs. (1) to (4) are reduced to

sr~ (t) + 'ECOg+P (t)k

k' k "'Vk'(t) +k "( )'
k=kt+ ktt

(5)

Here the matrix element Ak, -„„is given by

A-„,~„=,(k' xk") e, [(k")' —(k')'],

time and space are normalized by +„'and

p,(=e, /m„) (thus k is normalized by p, '),
is the normalized (by ~„.) drift-wave frequency

The nonlinear mode coupling in our case origi-
nates from the convective derivative in the polari-
zation drift of ions. This makes our approach
fundamentally different from previous two-dimen-
sional calculations that use the (E &&B,)n nonlinear-
ity'~; in our case this term has no contribution
because its divergence is zero.

If we expand y(x, t) in spatial Fourier series so
that

given by

—k, T,s (inn, ) /Bx
eB,(1+k')(u„.

Here the z axis is taken in the direction of Bp and
x in that of the nonuniformity.

Equation (5) is the basic equation which we be-
lieve to be appropriate to describe a general
class of quasi —two-dimensional (k ii=0) low-fre-
quency turbulence in a nonuniform plasma. We
note that, because cok*=10 ', even with an ampli-
tude yk-10 ', the nonlinear term can dominate
near @=1 and the equation becomes a Navier-
Stokes type —a notion of strong turbulence. While
at k«1, the linear term dominates and the weak-
turbulence signature appears. For a very large
value of k, ~-k* becomes small and it should be
replaced either by viscous or by ion Landau-
damping rate, which contributes to the sink of en-
ergy. We also note that the mode coupling tends
to rotate the k spectrum in the plane perpendicu-
lar to the magnetic field, hence will isotropize
the spectrum in this plane.

Let us now try to solve the equation using the
renormalized-weak-turbulence technique' and by
assuming an existence of large-amplitude pertur-
bation at a long-wavelength regime. We first in-
tegrate Eq. (5) to obtain

'pf(t) 2 2 Ap(', ,"f'exp [ i~~*(t t')] y —
Tr

(t') pg-(t') «
k=k 'xk"

Now, if we multiply Eq. (5) by yr, *(t) and add the complex conjugate of the product, we have

—„I mr(&) I'= l 8 &r,, r,,[ sr„(t)vr„(t)er, *(t)+c c ]. (8)
k =kg+

The wave kinetic equation is constructed by substituting Eq. (7) into the right-hand side of Eq. (8) and

by taking ensemble average. We use the random-phase approximation here. However, because of the
presence of the large nonlinear term, we retain the decay rate, yk, of the two-time correlation func-
tion compared with the characteristic frequency +-k. We postulate here a Lorentzian shape for the two-
time correlation function;

(v -„(t)qr, ,*(t'))= 5„-;,
I qr(t) I'exp[- (t~r+yr)(t —t')],

where 7 z will be obtained later by the renormalization technique. If we now substitute Eq. (7) into the
right-hand side of Eq. (8) and use the relation (9), we have the following wave kinetic equation:

2

(1O)

In the derivation of this expression the frequency mismatch is assumed to be smaller than ~, which
is valid near k = 1. The second and the third terms in the right-hand side are the self-interaction terms
to be used for the renormalization of the propagator, and the first term represents the mode-mode
coupling.

We now use the assumption that there exists a large-amplitude mode in a long-wavelength region.
We shall discuss later the physical origin of such a long-wavelength perturbation. Writing the poten-
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tial perturbation of the mode as &pg„where lk, l «1, and assuming that

ling,

l'» lygl' and ~ «~ for
k-p, ', we can linearize Eq. (10) with respect to Iqgl'.

Let us first obtain ~, which should give the width of the frequency spectrum. For this purpose, we
multiply Eq. (5) by ~"(t') and use Eq. (7) to obtain

Thus, from Eq. (9), we have

1 Q k'o &0 2k' + 4Q + 1
2 l,k' I vg, l (12)

where a simple average over the angle between k and k, is taken assuming no dependency of
I y„l' on

the angle, and the lowest-order term in lk, /kl is retained. The obtained ~, which represents the
width of the frequency spread (around ~ =0), has a different structure from that derived by Dupree and
Weinstock' due to the finite ion-inertia term used here. For a small value of k, yk ~k', while +g*
o:k, hence y~ can become smaller than ~*where the present result becomes inapplicable. If we take
the frequency spread at k =1 of Ref. 2, y, - 10 '. This gives the potential amplitudes of k, mode, ly~, l,
approximately" 0.2 for ko = 0.1.

Finally, we obtain the stationary k spectrum density, lpgl'. For this purpose, we set the left-hand
side of Eq. (10) to zero (stationary condition) and equate the damping of I~I, [Eq. (12)] to the excita-
tion of I

~l' by the mode coupling between y&,„g and ~ . We then expand I ~ g I' around I ~l' in the
power of ko;

ln-z I'= lnl'+(k. &/»)Iml'+~2(k. &/&k)'Iqgl'

It then turns out that the leading term of the mode coupling just cancels with that of the damping term. "
Hence, by balancing the terms in the order k,', we obtain the following differential equation for I yJ',

d'le. l'
2

I+»' die. l' »k'+»k'-5
dk' k(1+k') dk k'(1+k')

In the derivation of this equation, the assumption that
I
~l' does not depend on the direction of k is

used again.
Equation (13) is found to have two independent solutions, one having a form -k ",which spuriously

represents the long-wavelength spectrum, and the other having a broad peak near k = 1, which repre-
sents the short-wavelength spectrum that we are looking for An app. roximate analytic solution for the
latter has a form

Iq, l'=k"/(1+k')" for ks min[10, (T, /7', )"'].
The solution for k R 10 becomes oscillatory and
is hence nonphysical.

Figure 1 shows the comparison between the the-
oretical spectral density given by Eq. (14) (solid
curve), and the experimental data published by
Mazzucato. ' lt is fitted at k (un-normalized) = 10
cm ' assuming p, =10 ' cm. A good agreement
is seen in the long-wavelength side. The poor
agreement in the short-wavelength side is expect-
ed because an additional damping and reduced
mode-coupling coefficient will appear in k & 1 due
to the finite-ion-gyroradius effect.

We now justify the assumption of the existence
of a large-amplitude, long-wavelength mode.
Such a mode may be excited directly by a drift-
wave instability. " Because the mode-coupling
coefficient is small for a long-wavelength region,
the nonlinear damping rate is small. This indi-

(14)

cates that a drift wave with a long wavelength,
even if the growth rate is small, can build up to
a large-amplitude level. The other candidates
are a magnetohydrodynamic or tearing mode"
and/or a long-wavelength convective cell" which
are pertinent to a nonuniform plasma which is
continuously heated (for example by Ohmic cur-
rent).

In conclusion, we have derived a model equa-
tion which is appropriate to describe low-fre-
quency, short-wavelength dynamics of a mag-
netized nonuniform plasma and obtained the w-
integrated k spectral density as well as the width
of the ~ spectrum assuming the turbulence is
maintained by potential fluctuations in a long-
wavelength region. Since the result does not de-
pend on any particular mode of the system, the
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FIG. 1. Comparison of the co-integrated k spectral
density between the theory [Eq. (14)], shown by the sol-
id curve, and the experiment by Mazzucato (Bef. 1),
shown by dots and straight error bars. It is fitted at
k=10 cm using p =10 cm. Discrepancy in the short
wavelength is due to the finite —ion-gyroradius effect
and the classic viscous or ion Landau damping which
are not included.

obtained spectral density is considered to be uni-
versal to a magnetized, nonuniform collisionless
plasma.

Discussions with Dr. H. Okuda, Dr. R. Z. Sag-
deev, Dr. R. E. Slusher, and Dr. C. M. Surko are
greatly appreciated.
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