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Alfven Ion-Cyclotron Instability: Its Physical Mechanism and Observation
in Computer Simulation
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The physical mechanism of the Alfvhn ion-cyclotron instability due to ion-temperature
anisotropy in a high-p plasma is explored. We have observed evidence for the proposed
mechanism in runs on a magnetostatic particle simulation code. Saturation and stabiliza-
tion of the instability are discussed on the basis of the present mechanism.

Since Weibel' found an electromagnetic instabil-
ity in a plasma due to a temperature anisotropy
(higher perpendicular temperature than parallel
one), several authors have discussed similar in-
stabilities for a plasma in a magnetic field, name-
ly an instability for the whistler branch' and
another one for the ion-cyclotron branch. ' In a
low-p plasma the physical mechanism for these
instabilities is the familiar inverse ion/electron
cyclotron resonance (Landau-type). ' In such a
case the instability condition is universally T /
T~~ )0, /(0, —&u) for either electrons or ions,
where cu is the real frequency for either branch
and the temperatures and gyrofrequency Q, are
for either electrons or ions, respectively. In a
high-P plasma, on the other hand, Davidson and
Ogden~ quite recently pointed out that the ion-cy-
clotron branch can be unstable even without the
ion-cyclotron growth mechanism. Hereafter we
call this instability the Alfvdn ion-cyclotron (AIC)
instability.

As one tries to design more efficient schemes
for magnetically confined plasmas, one impor-
tant measure of achievement should be the magni-
tude of the P confined. For example, recent prog-
ress in mirror experiments at the Lawrence Liv-
ermore Laboratory (2XIIB) has prompted the de-
sign of a larger and higher-P experiment. It is
for such situations that the AIC instability draws
current' research attention'. This instability must
be understood and stabilized. The AIC instability
is dangerous especially for the mirror machine,
because this instability tries to isotropize the
plasma increasing the ion parallel temperature
and thus can lead to the abrupt loss of confined
ions. In this Letter we clarify the physical mech-
anism of the Alfvdn ion-cyclotron instability by
theoretical calculations and demonstrate that the
proposed mechanism, in fact, plays a role in
driving the instability by use of computer simula-
tion. %e note that our arguments apply equally

to the whistler case by exchanging the roles of
the ions and electrons.

Our physical picture is based on a fluid model
in which the plasma has only a T, and Ti~ is
zero; i.e., a disk distribution function:he ex-
treme version of an anisotropic distribution. The
configuration is shown in Fig. 1. When a per-
turbed magnetic field B, is applied, the ion cyclo-
tron orbits tilt around the B~ axis just like the
tilting of a gyroscope according to L= p, ~B~ with
L and p, the angular momentum and magnetic mo-
ment of a gyrating ion. In velocity space, the dis-
tribution of ions rotates around the Bo &B~ axis
and this causes a parallel ion displacement and,
therefore, a net current along Bo &B~. Thus the
rotation of the anisotropic distribution results in
a net torque force (tensorial pressure) which en-
hances the parallel particle displacement more.
The distinction between this mechanism and the
process for the current filamentation instability'
should be emphasized: In the latter case the
mechanism for the instability is current-current
attraction and repulsion forces (Biot-Savart inter-
action).

The zeroth-order ion velocity is

v~, = x
i v, [ cos(nt+ 8, ) —y ~

v,
~
sin(f7t+ 8,),

FIG. 1. Tilted anisotropic velocity distribution and
the polarization of the ion-cyclotron wave.
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where Q is the ion cyclotron frequency and 0,. is the initial phase of the ith particle; we assume an ini-
tial uniform random distribution in 0, Let us put in a perturbed electromagnetic field of left-circular
polarization: E~=xE&cos(kz —vt)+ vE~ sin(kz —&ut). The equation of motion in the parallel direction
dv p /dt = (e/Mc) (v~, xB~) yields the solution

eE Iv lk 1
sin(kz+8, + (Q —~)t).

(d 0 —40

Now this perturbed parallel velocity leads to an additional force on the ion fluid in the perpendicular
direction:

ZX ~~+ ZV

dI. ~ A ~ A 0 (3)

where P,„/nM= (vi~v»„) and P„/nM= (v~, v~„). The average is taken over initial v~~, v„and phase,
8,, distributions. The third term on the right-hand side of Eq. (3) is a net force generated by the stress
tensor associated with the tilted nonspherical distribution function f(v, v

~, ); for a spherical distribution,
such a term vanishes. Since the distribution of 9,. is uniform, we obtain the tilting forces from Eqs. (1)
and (2) as

P., eEAk )v, I'
(sin(kz+ g;+ (Q —(o)t) cos(Qt+ &;))= — ' sin(kz- ~t),

1 eEAk lvAI'

nM M~(Q —&u) 2 M&u(Q —(u)

and similar expression for P„. Accordingly, Eq. (3) becomes

1 gp'[v |' . „eEA 1 k'jvAI'
sin(kz —(ut) —y

( )
1 —

2 ( )~
cos(kz —(ut).

(4)

The anisotropy effectively modifies the field E~ by a factor 1 —2k' Iv, l'/e(&& —ur). Substituting the per-
turbed ion current J= n, e5v, with 5v~ given by Eq. (5), and the electron drift current into Maxwell s
equation, we can reproduce the dispersion relation for the AIQ mode'.

co 1 k'lvAI'—O'Q —0) ~
—+(0;

Q —(d 2 (d(Q —GO)

The destabilizing term originating from Eq. (4)
arose clearly from the noncanceling net force due
to the tilted nonspherical distribution.

If the physical mechanism is based on "macro-
scopic" plasma motion, such plasma behavior
should be able to be detected in an "experimental"
measurement. In order to "see" the above physi-
cal process, we have used the 1-2/2D (three ve-
locity and one space coordinate) magnetostatic
particle code' to simulate it. In the runs we
chose the following parameters: Q, = —', ~~„M/m,
= 5, g = 126m~, ', where 6 is the grid spacing,

length I, = 5126, and the number of electrons and
ions were 5120 each. The value of P for the per-
pendicular ion temperature was 0.32. The static
magnetic field is taken parallel to the direction
of spatial variation (z). We expected that with
such strong temperature anisotropy the AIC insta-
bility mill arise, and with these settings the code
showed an instability. More details of the identi-
fication of this instability as the Alfvdn ion-cyclo-

(6)

tron instability in thermal runs will be given else-
where. '

To clearly extract the tilted rotation of the disk-
like distribution function, we launched during a
very short period a small-amplitude pilot wave
of mode 4, which is the most unstable mode. We
made sure that the launching mas so weak that it
did not destroy the linear property, but yet strong
enough to favor the growth of the wave number so
as to overwhelm other modes: The initial level
of wave 4 is -10 times the thermal level of other
modes. Let the perturbed magnetic field with
wave number k be B„=Basin(kz —&et+ n), with u,
the initial phase. For the ion-cyclotron wave the
phase X defined below shouM decrease in time:

y = tan '[B„„(k)/B,„(k)]=—&et+ n,

where B„„(k)and B,„(k) are the real parts of the
Fourier transforms of the magnetic field in the x
and y directions. The measured wave phase is
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shown in Fig. 2(a). As the wave grows well above the thermal level, the trend to monotonically de-
creasing phase is evident. We measure the temporal behavior of the ion distribution at a fixed spatial
point. This may be done by storing test-particle velocity information around z = z,. According to our
physical picture described above, the averaged ratio of the parallel velocity to the perpendicular is
given as

eBi I[(tan(Qi+8;))cos(kzo+ n —~t) +sin(kz, + u —~t)'] = — sin(kzo+ u —&at), (8)v Mp 0- (d Mc Q,-~
and similar expression holds for (v p/5 ) at z = z, .
To derive Eq. (8), we note that the average of a
periodic function with a uniform distribution in 8,.
over a period 2p is zero. The angles of the disk
rotation projected on the x-z plane and the y-z
plane are, respectively,

( y,)—= —y sin(kz, + o, —(ut), (9)

(1o)(y,)=-- icos(kz, + a-cot),
where y—= (B /B, )(1 —~/0) ' «1 was assumed.
From Eqs. (9) and (10), the projection of tilting
angles (y,) should oscillate around zero and the
amplitude of phase oscillation should grow expo-
nentially as the wave is linearly unstable. The
phase of the phase oscillation of ( y, ) should be
advanced 90' over that of (y,). The frequency of

v/2
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FIG. 2. Temporary behavior of phases of (a) the wave
and (b) the disk tilting. The phase slippage between the
two can be explained, because the wave is ggominf. .
With growth rate y, the phase difference is sin(kzo+ p)

0 54 j where sinp = y[co —0 ) +y ] i and measured val-
ues y=0.110 and zo =260.5 at t =150co&~ '. Since y is
-0 at t =150&v&, ' in (a), (y,) should be 0.54 times of
its peak value, while (b) gives -0.7.

the oscillations should be the same as the real
frequency of the unstable wave. To sum up, the
disk phase propagates helically with the same
phase velocity as the wave and the tilting angle
increases exponentially until the instability satur-
ates.

Figure 2(b) shows the measured projected an-
gles of the disk tilting in time. The statistical
averages are made over 200 test particles locat-
ed initially in the interval of z = (2566,, 2668). In
order to avoid the singular property of the tan-
gent in Eq. (8) and to obtain reasonable statistics'
in Eqs. (9) and (100), we took the arctangent of
v ii/v„ first and then averaged over all the test
particles. We see clearly the disk rotation in
Fig. 2(b). First of all, the angles oscillate around
zero with period "90~p The theoretical peri-
od of the unstable wave is T= 2s/&u-2p/0. 070
= 89.8'~, '. Secondly, the amplitudes of the an-
gles ( y,) increase approximately exponentially.
In the third place, the phase of ( y, ) is advanced
over that of (cp,) by approximately 25&v~, ', which
corresponds to -100' phase difference as com-
pared to the theoretical value of 90'. These find-
ings in the simulation strongly support our pic-
ture of the physical mechanism.

Finally, we discuss saturation and stabilization.
Until t-200m~, ' the population of resonant parti-
cles is small, because the resonant phase veloci-
ty (0 —cv)/kii for mode 4 is about 1.4(T, ii/M)'l'.
This is another reason why we can see the disk
motion in these runs: The bulk of the distribution
follows the macroscopic rotation, while a small
number of resonant particles should follow more
complicated individual orbits. The upper bounda-
ry to the unstable wave number k, at saturation
decreases in time according to 0- &u, = QT ii(t)/
Ti(t) (see Fig. 3). This is because the instability
is kinetic near the upper boundary: Modes of
larger 4 saturate quickly due to enhanced paral-
lel temperature. After 250~~, ', the surviving
modes 2, 3, and 4 with co-kV„seem to cause
small-amplitude oscillation seen in Fig. 3(b),
whose period is 120~~, ', as compared with theo-
retical value of 123~~, ' for magnetic trapping.
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AIC wave is unstable, is obtained by replacing
Ivil' in Eq. (6) by Ivy l'kL/2w. When the in-
creased k, decreases the critical resonance ve-
locity Vso= (Q —&u, )/k, down to the parallel ther-
mal velocity v, t, the phase mixing of the tilted
disk rotation results, and leads to stabilization.
The condition V~~=v, i

yields a scaling law for the
critical stabilizing length L, of nonuniformity as
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FIG. 3. Saturation of the instability and quasilinear
heatmg. (a) Points A, B, C, and D represent the upper
wave number k of saturation by theory for the respec-
tive time. Wave energy accumulates at lower k modes.
(b) The temperature fo11ows the quasilinear relaxation
(theory in Q).

These findings lead to an important consequence
that we only need to stabilize the low-k modes
(hydro-regime). In a high-P plasma, the longi-
tudinal nonuniformity of Ti is the most conspicu-
ous mechanism for the AIC stabilization. ' When
kL& 2m with a characteristic length L of the non-
uniformity, T~ nonuniformity effectively reduces
the tensorial pressure in Eq. (4) by a factor kL/
2x, which is a ratio of the length occupied by hot
ions to that by the wave packet. Thus in the non-
uniform system we obtain increased critical 0„
the lowest possible wavenumber for which the
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