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Interactions between Two Superconducting Weak Links in the Stationary (V = 0) States
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Effects of interaction between two superconducting weak links (SWL) at V = 0 have been
calculated using the Ginzburg-Landau theory. Variations of the critical current of one
SWL affected by a dc current in a neighboring SWL are found in good qualitative agree-
ment with a recent experiment. The current-phase relation of the combined system is
computed for various separations between the two SWL s; it is shown explicitly that the
system behaves as a single SWL when the spacing between links is comparable to the co-
herence length.

Physical properties of the superconducting
weak link (SWL), which consists of two supercon-
ductors separated by a small region with weak-
ened pair potential, have been extensively studied
for many years. This system exhibits many inter-
esting phenomena virtually identical to the Jo-
sephson effects found in tunnel junctions. One
outstanding feature of this macroscopic quantum
structure is that its fundamental characteristics
and the interaction between bvo weak links can
actually be controlled by variation of some mac-
roscopic dimensions in the system. Experi-
ments"' have now revealed that coupling between
two SWL's can indeed be changed by varying,
among other parameters, the separation between
the weak links. In this note we give a theoretical
analysis of the interaction effects between two
SWL's in the zero-voltage region. It is hoped
that this result will clarify some interpretations
of the complicated experimental observations.

When a SWL is current-biased below its criti-
cal currentI„V =0, the order parameter is a
stationary function of position only. Its general
behavior can be quite well described by the Ginz-
burg-Landau (GL) equation. ' Solutions of this
equation subject to appropriate boundary condi-
tions have appeared in the literature. " The near-
ly sinusoidal current-phase relation derived from
these solutions is in accord with general expecta-
tion and with experiment. ' We consider a two-
SWL system in which each SWL can be described
by a one-dimensional model with solutions ob-
tainable from the previous work. Hence, aside
from the nonlinear term in the GL equation, our
problem is similar to solving a wave equation in
a double-well region by making use of the known
solutions of the equation in a single potential well.

Preliminary results for the special case of two
identical SWL's have appeared in publication. '

Our model of the weak links is schematically
represented in Fig. 1(a). The regions L a, a, --
constitute one SWL (A) in which the pair potential
in a, is weakened. Likewise a, -a, -R form another
SWL (8). These two SWL's are joined together
by a superconductor a, -a4. Each zone is, in gen-
eral, characterized by a set of constants defined
in terms of the well-known parameters in the
usual GL theory (),H„y,n, T„etc.). Except for
the two ends (I and R), each zone has a fixed
thickness a& (i =1,2, ..., 6). The cross-sectional
area of the whole system is considered so small
that effects due to the magnetic field can be neg-
lected. At each interface of two different super-
conductors, the Zaitsev boundary conditions'
are applied so that continuity of the pair poten-
tial and normal current density is satisfied.
This arrangement is most suitable for calculating
interaction effects on the critical current. When
the current-phase (J'-@) relation is calculated,
regions 2, 3, 4, and 5 are taken to be the same
material and we simply denote

a =+a,
$ m2

as the distance separating the two SWL's.
If we express the reduced potential &/&, as

f(N)e'~t"I the GL equation to be solved in each
zone with subscript k (e.g. ,k =1,2, ...) takes the
following general form:

rt» d. — --3 +f.(y)-f. (y)=o
d'f. (y)

dy a

where rt„and f„reaparameters pertaining to the
kth zone normalized with respect to the corre-
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fined in the reference superconductor. We nor-
mally take ~ to be the reference material. In
dimensionless form, the thickness of each zone
becomes d, =a,/g„(i =1,2, ..., 6) and the separa-
tion between the two SWL's becomes D =a/g„.

The phase difference can be obtained from the
integral
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with appropriate limits in each zone. Our defini-
tions are actually quite similar to those used by
Baratoff and co-workers. ' Equations (1) and (2)
reduce to their simpler form given in Ref. 4 when
we set g, =&, =y.

To calculate the J-4 relation for the two-SWL
system, we set j& equal to a constant current J.
For every given value of J, the whole spatial
variation

off�(y)

is obtained by starting with a
trial solution and following by iterations. The
total phase difference is then obtained by integra-
tion. Current-phase plots for three different
separations are shown in Fig. 1. In these plots,
@ is defined the same way as in Ref. 4, which is
the phase difference between results obtained
from (2) for a given J with and without the weak
links.
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FIG. 1. (a) Schematic representation of the two-SWL
model. (b)—(d) Current-phase relation at various sepa-
rations: (b) D=O.B; (c) D=0.8; (d) D=8.O. For all
three plots, q &

= 0.01, q6 = 0.02, and g = 1.0 for all other
regions; d( = 0.1, d6 = 0.1,
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sponding parameters in a reference superconduc-
tor, i.e. , q„=g„'/$„', $„being the coherence
length of the reference superconductor, y =$„'x,
and j~ is the current density measured in units of
g„' ' which is equal to the quantity cH, '$/p, de-

From the curves shown in Fig. 1 we see that
when the SWL's are very close to each other
[D =0.3, Fig.l(b), the current-phase relation
takes the same form as a single SWL, signifying
that the two-SWL system now behaves as a single
coherent quantum entity. For a large separation
[D =3.0, Fig. 1(d)l, there are two complete J-4'
branches, indicating that the two SWL's are es-
sentially independent of each other. ' In the in-
termediate region IFig. 1(c)j, the J-C' plot shows
evolution of the second branch which has split off
from the single coherent system. This behavior
of branching out can be followed step by step
through gradual changes in the sepa, ra, tion O.

When the second branch [II in Figs. 1(c) and
(d)] starts to grow, the J-@ curve may become
multivalued. In order to decide which part on the
curve should be energetically more favorable,
we have calculated the GL free energy correspond-
ing to each point on the J-4' curve. The first
branch [I in Figs. 1(c) and (d)] always has lower
free energy F than II. I" is a monotonic increa, s-
ing function of 4' for 0& 4' «. It appears tha, t I
takes a discontinuous jump between I a,nd II at

The lower part of II normally ha, s higher
free energy than the upper part. The energy
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structure in the F -@' domain resembles the band
structure of a periodic lattice; this point will be
discussed in detail in a later communication.
From these considerations we feel that it should
be interesting to measure the entire branch I
and part of the branch II by placing the two-SWL
system in a superconducting ring. These experi-
ments should provide information on the dc coup-
ling of two SWL's and on the spatial distribution
of the pair potential.

From the maximum of branch I, we determine
the critical current of the system. This has
been done for two different sets of parameters
in the weakened regions (a, and a,) with the sepa-
ration D varying between 0 and 3.0. The critical
current as a function of D is shown in Fig. 2.

It is interesting to note that the critical current
decreases with decreasing separation D. The
lower limit is set by D =0 when the two SWL's
physically merge into one but with a larger thick-
ness of the weakened region than that of the origi-
nal SWL. If the separation is large, the two
SWL's are independent, and thus the critical cur-
rent of the twin approaches the smaller of the
two individual critical currents. The variation of
critical current for intermediate separations can
be under stood by considering the depression of
order parameter in the region which connects
the two SWL's tu, -a„Fig. 1(a)]. Narrower sepa-
rations will require more depression off in or
der to satisfy the boundary conditions, thereby

reducing the total critical current. This varia-
tion of I, is in agreement with one experiment'0
in which locking of two different critical cur-
rents was observed at a value lower than either
one of the individual critical currents.

The coherence effect arising from stationary
interaction described above should become more
pronounced for longer $. This is borne out in
the observation of stronger locking of critical
currents when 7' is closer to &,."'"

We have also calculated the effect on the criti-
cal current of one SWL due to a dc current in the
neighboring SWL. This is done by considering a
current sink (or source) at the interfaces marked
with da, shed lines in Fig. 1(a), thus correspond-
ing to the experimental situation where the two
SWL's are current biased separately. The bound-
ary conditions applied to each interface ensure
that the current density is continuous at every
point. For simplicity, we have used "rigid bound-
ary condition" (i. e. , f is a constant determined
by the current) in L and 8 for this calculation.

For every input current IB flowing in SWL (B),
the spatial variation off (y) is calculated over the
whole system and from which the J-4 relation
for SWL (A) is obtained. The critical current I,
for SWL (A) is computed for two relative direc-
tions of IB. Results are shown in Fig. 3. The
current in B has the effect of lowering the criti-
cal current of A. This can be understood by con-
sidering the spatial distribution of f(y). Higher
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FIG. 2. Critical current of the two-SWL system as a
function of D. g=1.0 in regions other than 1 and 6, d&

=d, =0.1 for both curves. Curve a, g&=0.01 and g6
=0.02; individual critical currents are I A=0.094, I P
=0.16. Curve b, q&=0.1 and g6

——0.2; individual critical
currents are IcA 0.886, I~p

——0.869.

FIG. 8. Critical current of SWL (A) as a function of
current I&

in SWL (B). g &
= 0.08, ge = 0.05, and g = 1.9

in all other regions. d
&

= d 3
——d4 = d 6

-—0.1, d2 = d
&

= 0.4.
Rigid boundary conditions are used in this calculation.
Dashed curve, currents in the same direction; solid
curve, currents in opposite directions. Current sinks
(sources) are introduced at boundaries shown by dashed
lines in Fig. 1(a).
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current flowing in B results in a further depres-
sion off and the continuity conditions imposed at
the boundaries require that f in A should also be
depressed further, thereby leading to a decrease
in the critical current I,A.

The difference in the reduction of I,A due to IB
flowing in two relative directions arises from the
different pair density distributions in the region
which connects the two SWL's. When currents
in the two SWL's are opposite and meet in the
middle of the system, their influence on the de-
pression off (y) in the middle is less effective
than in the case when the two currents are in the
same direction. Hence, the curve for currents
flowing against each other should lie above that
for currents flowing in the same direction. The
curves shown in Fig. 3 are in good qualitative
agreement with experimental results. "" The
stationary interaction thus explains the symmet-
ric part" of critical-current depression in the
V= 0 region.

In conclusion, we have shown explicitly that the
stationary interaction between two SWL's gives
rise to coherent behavior of the system when the
separation is around one coherence length. The
decrease in critical current of one SWL due to
pai:r-density depression originating from a cur-
rent in a neighboring SWL is in good agreement
with experiment. Details of the present calcula-
tion will be presented in a separate publication.
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A thermochemical scheme containing two adjustable variables per element has been de-
veloped by Miedema and co-workers which correctly predicts the signs of the heats of
formation of 500 binary metallic alloys. Here we propose a simple but l-dependent orbi-
tal quantum model based on the valence energies of hydrogenic ions which contains no
adjustable elemental variables and which fits the Miedema variables for 25 simple met-
als with an rms accuracy of Bfo.

Some of the central questions in condensed-
matter physics are thermochemical in nature and
involve the existence and the crystal structures
of binary compounds and alloys. Although quan-
tum mechanics provides us with a general recipe
for answering these questions (at least in princi-
ple) for any individual system, a central theoreti-
cal goal has been the development of atomistic
concepts which will predict global trends in all
possible binary interactions in terms of separ-

able elemental parameters. If we consider the
global ensemble of all such binary combinations,
the number of possibilities is so great and the
distinctions in energy so fine as to preclude the
development of a deductive, quantum-mechanical
solution from "first principles. " Thus the litera-
ture abounds with atomistic empirical schemes
of one kind or another, and often there seem to
be no criteria which can distinguish among them.
While it may be difficult or impossible to use
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