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dent study of the satellite multiplet as a function
of temperature is now in progress. The much
shorter FID's of the central transition produced
by increased second-order quadrupole broaden-
ing at lower temperatures will be likely to re-
quire the application of a third pulse (at v, ) in
order to use a quadrupole echo' for data acquisi-
tion.

We hope that the proposed interferometric tech-
nique will be useful as a simple and sensitive tool
for investigation of quadrupole interactions in
half-integer spin systems. It allows the simul-
taneous measurements of both first- and second-
order quadrupolar energy shifts and, thus, is
capable of unraveling spectra complicated by sev-
eral overlapping —, ——,

' transitions (including
powder patterns) and chemical-shift anisotropies.
In particular, since the first- and second-order
quadrupolar energies are averaged differently by
atomic motions, the proposed scheme can fur-
nish additional information concerning dynamical
phenomena in solids.
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We report the results of the first band-structure calculation for AlAs-GaAs superlattice
structures consisting of several atomic monolayers of AIAs and GRAs per repeated slab.
The tight-binding method is used to investigate the band gaps and the character of the
electronic states as a function of the number of monolayers per slab. For any fixed con-
centration of Al, the material becomes direct as the number of monolayers per slab is
increased. The states at the band edges are predominantly in the GaAs layers and die
away into the A1As.

Recently, molecular-beam epitaxy techniques
have been used to fabricate heterostructures con-
sisting of alternating slabs of AlAs and QaAs. "
Up to now, the spectra have been analyzed by ap-
proximating the layered system as being a series
of GaAs wells sandwiched between larger-band-
gap AlAs barriers. 4 ' Variations on the one-di-
mensional Kronig-Penney model with bulk-relat-
ed effective masses and potential barriers cho-

sen to duplicate the optical spectra4 have been
used. Very recently Caruthers and I in-Chung'
have reported on a non-self-consistent, empiri-
cal pseudopotential calculation of the band struc-
ture of alternating single layers of GaAs and an
alloy of Ga, „Al„As. Their calculations for Gahs
on AlAs have the feature of producing states such
that the energy gap would be 1.58 eV. This re-
sult is in direct disagreement with the photolumi-
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nescence and absorption data which both give
about 2 eV for this gap. '

In this Letter we report the first results of a
parametrized tight-binding calculation, which
takes account of the three-dimensional atomistic
details of the material. The calculation is done
for several systems, each having alternating
slabs made up of various numbers of AlAs and
GaAs layers.

The main results obtained are the band struc-
ture and band-gap variation as a function of the
A1As and GaAs slab thicknesses, and the charac-
ter of the states at the band edges. In addition to
giving a description of the superlattice structure,
this method can also be used to investigate the
electronic properties of the AlAs-GaAs interface
in the limit in which the slab thicknesses become
large. Interface states, having wave functions
localized within a few monolayers of the inter-
face, can then be identified.

This calculation assumes a perfect lattice
match-up and abrupt interface between the two
compounds. ' The standard three-dimensional
tight-binding formalism can be applied to this
situation with one modification. The conventional
fcc unit cell of the zinc-blende crystal must be
enlarged in the direction perpendicular to the
(100) interface in order to include one complete
slab each of A1As and GaAs. This enlarged unit
cell is then repeated indefinitely in all three di-
rections thus forming the complete crystal.
There are interfaces dividing each unit cell in
two as well as interfaces at the boundaries be-
tween cells.

The tight-binding basis wave functions used
were one s-type orbital and three p-type (p„, p„
and p, ) orbitals per anion and per cation. Letting
34 and N equal the number of AlAs and GaAs lay-
ers per slab, respectively, there will be a total
of (M+1V) &&8 basis functions per unit cell. The
Hamiltonian matrix will have [(N+ 1V) x8]' ele-
ments and will be of a general form similar to
that used by Hirabayashi. ' The repeating slab
structure is dealt with by including matrix ele-
ments between the first and last monolayers of
the slab.

The AlAs and GaAs tight-binding parameters
used here were found by separately fitting them
to recent bulk pseudopotential calculations. ""
Some second-nearest-neighbor parameters were
necessary to reproduce roughly the shape of the
lowest conduction band in both AlAs and GaAs.
Even so, these parameters incorrectly give the
GaAs indirect gap as being between X and K in-

stead of at L. The Al-Ga second-nearest-neigh-
bor matrix-element parameters were taken to be
the average of the corresponding Al-Al and Ga-Ga
parameters. Since the calculation is not self-
consistent we are unable to determine the band
discontinuities or charge-transfer differences be-
tween the Al and Ga. However, the electronega-
tivities for Al and Ga, are very similar (~=0.02
on the Phillips scale). " Computation of the layer
charge densities show that charge transfer occurs
only at the interface layer and is small for these
layers. In the wide, separated-well limit, Dingle,
Wiegmann, and Henry4 fit optical data with a va-
lence-band discontinuity equal to about 15~/~ of
the direct-gap differences between GaAs and

Ga, „Al„As. We used their results and thus sub-
tracted this valence-band discontinuity from the
four AlAs diagonal bulk parameters. The num-
ber of independent parameters was reduced by
using the two-center approximation of Slater and
Koster. " The parameters are given in their no-
tation in Table I.

Since the superlattice has the ordinary zinc-
blende periodicity in the two directions parallel
to the A1As-GaAs interface, there is a two-di-
mensional reciprocal lattice with a square Bril-
louin zone as shown in the inset to Fig. 1. Each
point in this reciprocal space has mapped onto it
M+N points of the three-dimensional bulk zinc-
blende reciprocal space. Figure 1 shows the
band structure from I. to J for the superlattice
consisting of two layers of A1As alternating with
two layers of GaAs (M=2, 1V =2). There are a to-
tal of 32 bands (ignoring degeneracy). The energy
bands for k perpendicular to the layers are not
shown here. The dispersion for the highest va-
lence band is about 0.2 eV and for the lowest con-
duction band about 0. 1 eV. Both curve in such
a way as to increase the band gap.

Conduction-band-edge energies relative to the
top of the valence band were calculated for sever-
al fixed ratios of M to N. The energies were cal-
culated at two reciprocal-lattice points, 1" and J.
The I point represents the direct gap, and J has
the bulk L point mapped onto or near it, " the
GaAs bulk reciprocal-lattice point with the experi-
mentally lowest indirect gap. It is found that even
when the material is indirect, the band-edge
states are mostly on the GaAs ions. Therefore,
it is the J point which determines whether the ma-
terial is direct or indirect. The AlAs bulk con-
duction-band minimum is at the bulk X point which
maps onto the two-dimensional Brillouin-zone I
point. Figure 2 shows the results for up to twelve
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ted line is for the anion and the solid line for the cation,
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TABLE I. Tight-binding parameters for A1As and
GaAs determined by fitting to bu1k pseudopotential cal-
culations. The notation is that of Ref. 13. The sub-
scripts 0 and 1 designate anion and cation, respectively.
All parameters are given in units of eV.
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