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elusion of McCartan and Farr" that the B'Z well
depth is 0.5 cm is inconsistent with our obser-
vation of a level bound by 2.4+0.8 cm ' in the
O'Z potential. The failure of York, Scheps, and

Gallagher' to observe a pressure dependence of
the far red wing fluorescence of Na-Ne suggests
to us that their lowest pressure (40 Torr) was
not low enough to avoid three-body collisions
which formed bound NaNe~. This implies that the
systems NaHe, LiNe, and LiHe may also have

D,~'s, which are a larger fraction of kT than con-
cluded by Gallagher and co-workers. 9" It re-
mains to be seen if more sophisticated theories
of line broadening can explain the line shapes ob-
served by the preceding workers using potentials
consistent with the findings of this work.
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Nonlinear Dynamics of Drift-Cyclotron Instability
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Nonlinear shift of the ion gyrofrequency by the electrostatic ion cyclotron wave is
shown to detune the resonance between the ion cyclotron wave and the ion drift wave,
thereby stabilizing the drift-cyclotron instability. Solution to the resulting wave equation
exhibits nonlinear oscillations.

Large-amplitude ion cyclotron waves have
been observed in a variety of plasmas including
mirror machines, ' tokamaks, ' Q-machines, '
and the magnetosphere. 4 In an inhomogeneous
plasma, ion cyclotron wave may become unstable
when interacting with the ion diamagnetic-drift
wave' and this drift-cyclotron instability has

been observed in a multipole device. ' In mirror
machines, a single mode near the ion cyclotron
frequency propagating in the direction of the ion
diamagnetic drift is observed, characteristic of
the drift-cyclotron mode for a nearly filled loss-
cone distribution. (Catto' has pointed out that a,

temperature gradient, which we do not consider
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here, may importantly affect the linear theory of
the mode. ) This mode is a common occurrence
in mirror machines, dominantly affecting the
plasma containment. ' It is also an important mi-
croinstability in the post-implosion phase of 0-
pinch experiments when the plasma density gra-
dient becomes diffused. ' In this Letter, we study
the nonlinear behavior of a large-amplitude ion
cyclotron wave in an inhomogeneous, Maxwellian
plasma, propagating in a direction perpendicular
to the magnetic field. It is shown that the ion
gyrofrequency is shifted by the electrostatic ion
cyclotron wave. Because the drift-cyclotron in-
stability is due to the resonant interaction of the
ion Bernstein wave and the ion drift wave, ' this
nonlinear frequency shift can detune the reso-
nance once the mode grows to a sufficiently large
amplitude, leading to the saturation of the insta-
bility. We then solve the nonlinear wave equation
to find a relaxation oscillation of the amplitude,
possibly similar to the bursting instability ob-
served in mirror machine. '

Consider an electrostatic ion cyclotron wave
in an inhomogeneous plasma with density N(y)
=N, (1+y/1. ) immersed in a magnetic field B =Bz.
The potential of the wave is of the form p= 4
&&exp[i(kx —~t)], where x is the direction of the
ion diamagnetic drift v, =(cT,/eB'N)B &&V. N, co

~nQ= neB/mc (ion cyclotron frequency), and T,
is the ion temperature. The Hamiltonian equa-
tions of the particle motion with canonical vari-
ables p=Mv~'/2Q (the magnetic moment) and 8

=arcsin(v, /v ~) (the gyroangle) are'

p= —BH/B8 and 8= BH/Bp. (1)

The Hamiltonian H can be decomposed into that

of the unperturbed motion gyration in the mag-
netic field H, = p. P. --and that of the interaction
with the electrostatic wave,

=e4+, J,(kp) exp [i(l8- cut) + ikx],
where p= v~/Q is the gyroradius, J, are the Bes-
sel functions, and X=x —p sin8 is the guiding-
center position. For Hz«H„Eq. (1) can be
solved perturbatively by expanding p =Q, e'p, and
8 =+,e'8, with the small parameter e = esp/Mv ~'.
Because u =nO, we need to keep only the nth
term in HI and obtain, in the second order, the
following shift in the gyrofrequency:

(2)

where A~ = nO*- ~ is the frequency mismatch be-
tween the wave frequency and the nth harmonic
of the cyclotron frequency and I AcoI» b, Q is as-
sumed. When this frequency shift AQ, upon prop-
er averaging over the distribution, becomes com-
parable to the linear growth rate of the drift-cy-
clotron mode, then the detuning of the resonance
between the ion drift wave and the ion cyclotron
wave is expected and the saturation of the insta-
bility results. To derive quantitatively the satura-
tion level and the nonlinear dynamics of the drift-
cyclotron instability, we solve the Vlasov equa-
tion with the canonical variables p, 8, X, and Y
(guiding-center coordinates), with Y=y+ pcos8:

Bf BHBf BH Bf 1 BH Bf BH Bf
Bt'Bq B8 B8 Bq'Q BXBY BYBX

= '

1

where we have used X= —Q 'BH/B Y and Y= Q 'BH/
8X and H = II, + HI with

H, =e4exp(ikX-ivt) Q, Z(kp) exp" =e4exp(ikX- i&et)J„(kp) exp(in8)'

for m =nQ. The unperturbed distribution function is taken to be fo(p, Y) = [N, (Y)Q/mT) exp(- pQ/T) for
an inhomogeneous Maxwellian plasma. Expanding the perturbed distribution function in the powers of
e so that 5f=Q, e 6f„we find the first-order perturbed distribution

8 jp 8
Bf, =(&u —nQ) 'en4 —

Q f0+,J (kp) J,(kp) exp [ikx —i&et+ i(n —l) 8],8p

where the expansion exp(- ikpsin8) =Q, J,(kp) exp(-il8) is used in converting the guiding-center coordi-
nate X to the particle coordinate x. In the second order, we obtain a dc term Bf„corresponding to the
quasilinear modification of the unperturbed distribution, and a second-harmonic term 5f2, as follows:

e'
I q I'n' B k B Bz -

B k B

(u&-nQ)' " Bp nQ BY Bp " Bp nQ BY

yPe2cP ~ 8 jp 8 8J J„- f, exp [i2kX+ 2i(n8 —&ut)].
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We note that bf~ is proportiona]. to the ponderomotive potential g=e'k'
l 4'l'/M(&o —nQ)', representing t"e

effect of the "fake temperature" associated with particle oscillatory energy in the wave. In an inhomo-
geneous plasma this 'fake temperature" gives rise to a dc density modification:

d p d8 — e'I el'nk
2n' '

M(&u — Q)'T & Y Q (7)

where ao„=kV„ is the ion diamagnetic-drift frequency and I„(b) is the modified Bessel function with ar-
gument b =(kp,.)'=k'(T, /MQ. '). For large kp, , I„(b)e ' -1/v b = 1/kp, Because the dc electron density
is not as strongly affected by this single mode, a static electric field

(8)

will be set up and the plasma undergoes the E &B drift. For a linear density profile, this E &&B drift is
uniform and has no effect on the stability. For other density profiles, the E &B drift will be nonuni-
form, giving rise to an additional frequency shift which, however, is smaller than AQby a factor
I„(b)e ~ and will not be considered here.

In the third order, we obtain the nonlinear effect of the wave on itself corresponding to the nonlinear
gyrofrequency shift through the third-order distribution having the same phase as the linear wave:

8'g ' 8 k 8 . . 8(bf)f, exp[ikX+ i(n8 —wt)] =v-nQ' Bp' Bp nQ BY (9)

The dominant contribution to Eq. (9) arises from the effect of bf2 [see Eq. (5)]. It may easily be shown
that the effect of bf2 and the corresponding E, is much smaller in the large-kp limit primarily because
in bf, the operator 8/sp does not act on the rapidly varying Bessel factors. The perturbed ion density
evaluated at the particle coordinate x and in phase with the wave potential, i.e. , varying as exp(ikx
—i&at), is therefore

bn = ~!- (bf+5f)= — ' 1 — I(b) e~- * —P e' ' ' '
2m ' ' T ~ no, " ou @AT (10)

where the last term is the nonlinear density fluctuation with P=n'f, "x '[dJ„'(x)/d ]x'd x4n'[I'(2n+ 1)
(2n —1)], and change to the particle coordinate x from the guiding-center coordinate X is made by
setting X=x —p sin8 and expanding expikX=Q, J,(kp) exp(-il8+ ikx) The .perturbed electron density is
the usual linear response to the flute mode:

8p g ~2 2 Sl

T,. ' M

(12)

! For n = 1, this is of the order of a few percent for
p,./L =1/2, consistent with the value observed in
2X2B.' In larger devices with p, /L «1 the non-
linear frequency shift would limit e y/T to very
small values, probably well below the threshold
for violation of super-adiabatic confinement. "
Whether such stabilization would be effective
against the more rapid drift-cone modes charac-
teristic of non-Maxwellian distributions remains
to be investigated.

Although this nonlinear frequency shift detunes
the resonance for the original wave, one may
question whether a new resonance may be satis-e4, /T, =(m/M)' 4(p /L)' 4. .

Substituting Eqs. (10) and (11) into the Poisson equation, we find the following nonlinear dispersion re-
lation:

ru [I(h)e "+&P/T]ro)
m —&go

where AD=(T/4mne')'I' the Debye length and p,
= (m/M)'~'p, , the electron gyroradius. Setting

$ = 0 and &u = a&~(1+ b) = nQ[1+ 1„(b)e ~+ b] with b

«1, we find that the instability exists for p,. /L
&(m/M+ Q'/co~, . ') and the linear growth rate Z
= (k/p, .)'~'(XD'+ p, ')'"nQ with k = nL/p, ' where
L ' = dlnN/d Y and co~,. = (4nne'/M)' I' With the.

nonlinear term included, i.e. , ge0, we find the
equation for b to be 5' —bE= —y'/n'0', where 6
= Pg/T. Thus nonlinear stabilization of the origi-
nal mode is achieved when b is real or 6'/4 ~ y'/
n'O'. The resulting amplitude at saturation is
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(14)

where +=Pe'h'/MnQI„'(b)e "T;. [To include spa-
tial variation, one would put ~„-&+ —(&/&)9/~y. ]
1 etting 4 = re'" (r, )t real), we find

—,'(r + r X') r y' = C„
)t + gQ r = C2 /r (16)

where C, and C, are constants of motion corre-
sponding to the energy and angular momentum.
Because the w'ave initially grows from the ther-
mal level, we may set Cy C2 0 The resulting
equation becomes

J ( ,' or'+-2/—r') ' ' dr = t.

The period implied by Eq. (17) is infinite. ~ith
a small level of thermal noise, i.e. , C„C,+0
but small, the period would be y 'ln(r ~/r, )
i.e. , perhaps 10 times the inverse growth time.
The maximum amplitude is given by

r,„'= v2Yy/v n (18)

in agreement with Eq. (13). Such nonlinear oscil-
lations are somewhat similar to the bursting phe-
nomenon observed in mirror machine. ' Eventual-
ly collisions or wave coupling will damp the non-
linear oscillation and a steady-state saturation
level given by Eq (13) may b. e then reached.
However a definitive resolution of this question

fied for a new mode with slightly different k, i.e.,
&p, '/I =n[1 —I„(b)e —Pg/T] which in turn will
be unstable. This is not the case if the quantiza-
tion condition allows only one discrete k number,
and more importantly, if g~ l 4 l' has rapid non-
linear oscillation around the saturation level,
which is indeed the case as shown below. The de-
tuning of the resonance due to the nonlinear shift
of the cyclotron frequency not only stops the
growth but also generates nonlinear oscillation in
the wave amplitude because the overshot of the
amplitude above the saturation level given by (13)
causes the wave to be damped. The wave damp-
ing eventually restores the resonance and the in-
stability sets in again provided the free-energy
source of the instability '.he density gradient is
not relaxed over this time scale.

To examine the nonlinear temporal behavior of
the wave amplitude, we derive the following non-
linear wave equation for the amplitude by setting
bar = (u —sr+ = ar —n A(1+ 1') - iB/Bt in Eq. (12) with
a, slowly varying 4(t):

awaits the solution of the spatially dependent non-

linear pr oblem.
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The radial localization of the destabilizing trapped-electron term that is caused by the
differences in the pitch of the magnetic field and the mode structure is shown to result
in a completely new form of the dispersion relation for the trapped-electron instability.

The trapped-electron instability is basically a.

drift wave that is driven unstable by the presence
of trapped electrons. "Because the frequencies
of interest are much less than the electron bounce
frequency, the trapped electrons respond to the
pitch of the tokamak magnetic field, B = (BP,/R)
x [f + (e/q)e], while the ions and adiabatic elec-
trons respond to the pitch of the mode structure.
The quantities, r, &, and p are the radial, poloid-
al, and toroidal variables, respectively; e =r/R„
R =R,(l+e cos8), q is the safety factor, and R, is
the major radius of the magnetic axis. The re-
sponse of the trapped electrons to the magnetic
field results in a coupling of poloidal modes; the
full eigenvalue equation is a second-order differ-
ential equation in the radial coordinate and an
integral equation in the poloidal variable.

Because of the important effects that the trapped-
electron instability may have on the transport in
tokamaks, a, complete understanding of the two-
dimensional eigenvalue equation is essential.
Numerical solutions of this equation are current-
ly being pursued and preliminary results a,re
available. " Previous analytic investigations
have been on one-dimensional ones only, retain-
ing either the radial' or the poloidal' variation.
However, to retain only the poloidal variation is
to neglect completely the stabilizing influence of
shear and, perhaps more importantly, the radial
localization of the de stabilizing trapped-electron-
induced coupling term. On the other hand, re-
tention of just the radial variation has been pos-
sible only in the limit in which the mode extent,

x„ is much less than the spacing, 4 =(l sq/sr) ',
between rational surfaces of the same toroidal-
mode number l, but different poloidal-mode num-
bers m. This isolated-rational- surface model
completely neglects, therefore, the coupling of
rational surfaces and thus only treats radial vari-
ations caused by shear. In particular, the maxi-
mum growth rates in this isolated-rational-sur-
face model are found to occur for mp;/r- l,
where pt = (MqT;)' 'c/eB, is the ion gyration ra-
dius and m/r the poloidal wave-vector component.
For m p&/r ~ l, however, the mode centered
about the rational surface at which q(r ) =m/t
overlaps the neighboring few rational surfaces
having the same l. As a result, contribution
from neighboring rational surfaces cannot be ne-
glected. Furthermore, because the radial varia-
tion of the destabilizing trapped-electron term is
on the scale 6 and because 6~x,, the radial local-
ization of the trapped-electron contribution must
be retained.

In this Letter, an analytic solution of the full
two-dimensional eigenvalue equation is presented
which does not suffer from the shortcomings of
previous analytic treatments and which provides
needed insight into the preliminary numerical
results. " In fact, the differential equation has
been solved analytically by two techniques. Only
the simpler perturbation-theory solution will be
sketched in this Letter. Further mathematical
details and the more rigorous solution by a, meth-
od of matched asymptotic expansions' will be
pre sented in an expanded ar ticle. '


