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We interpret the broad dimuon resonance at 9.5 GeV as two or three unresolved nar-
row states of a b quark and antiquark. We calculate the energy spectrum of bb states
using a linear plus one-gluon-exchange potential.

Herb et al.' have recently observed a dimuon
resonance & with a mass of 9.5 GeV and a width
of 1.2 GeV. We interpret this resonance as evi-
dence for a fifth quark of mass~&=4. 7 GeV. We
assume that the peak in the dimuon spectrum
seen by Herb et al. is, in fact, several narrow
resonances of the bb system, analogous to the
P and g' states which in the quark model are nar-
row states of cc.

Many authors have postulated that the quark
model should contain more than four quarks. '
Previous to the discovery of the &, the mass of
the b has been estimated' to be around 4 to 6
GeV. This estimate was based on the so-called
high-y anomaly in antineutrino interactions. How-
ever, a recent experiment by Holder et al.' shows

no evidence for a high-y anomaly. It therefore
seems as if the prediction of a quark with mass
near that of the quark in the Y was a coincidence.
In the absence of a high-y anomaly, the new b

quark is expected to be left-handed. The handed-
ness of the quark will not be relevant in our con-
siderations.

Our model is very similar to that used by sev-
eral authors' ' to calculate the mass spectrum of
charmonium. In particular, we assume that the
interaction between the b and b quarks can be de-
scribed by a one-gluon-exchange potential plus a
linear confining term. In the nonrelativistic ap-
proximation (which should be better for bb bound
states than for cc states) the potential between a
b quark and antiquark separated by a distance r
ls

V =-&a Jr +p (r -r, ) +~ct,(3I ~ S+L' ~+8»)/(2m, ' ')r+&~ n, 6(r)(1+~v, ~ &,)/m, '.
Here &, is the strong-interaction coupling con-
stant, P and r, are associated with the slope and
intercept of the confining potential, L is the orbit-
al an~lar momentum, v, and o, are Pauli matri-
ces, S is the sum of the quark spins, and y2 is
the tensor operator. The factor ~4 arises from
the non-Abelian nature of the theory. ' Ne have
omitted certain terms involving momentum,
which, if included, would prevent the mave equa-
tion from being of the Schrodinger form. These
terms contribute very little to the energy in the
present case.

In writing Eq. (1), we have assumed that the
spin-orbit, tensor, and other spin-dependent
terms derive solely from the Coulomb-like term
in the potential. In making this assumption, we
are following other authors such as De Rujula,
Georgi, and Glashow. ' Another possibility, which
we have considered in a previous paper, ' is to:
take, for example, the spin-orbit term to be of
the form (1/r)dV/dr, where V includes the con-
fining term. We plan to consider this alterna-
tive in more extensive future investigations of
the & spectrum.

Because of asymptotic freedom, ' +, should be

quite small for the heavy b quark. Various au-
thors" have estimated~+, to be in the range
0.2 to 0.4 for the ce system. In the case of b&,
we take~&, =0.2. A value of this order, a little
smaller than the value for cc, comes from the
logarithmic behavior of „expected on the basis
of asymptotic freedom. We assume that the slope
P of the confining potential is P = 5.8 fm ', the
same as we obtained earlier' in fitting the g spec-
trum. The intercept r, then is fixed by the re-
quirement that the mass of the lowest & state be
-9.4 GeV. We obtain ro:0 27 fm a value some-
what different from the value r, =0.41 fm which
we found in calculating the P spectrum with the
same model. We do not view this difference as
important, because r, depends sensitively on the
choice of mass for the b quark. By changingm,
a small amount, we can make r, be the same for
the ce and bb potentials.

Our procedure is to. solve a nonrelativistic
Schrodinger equation with the potential of Eq. (1),
except for the contact term, which we evaluate
in lowest-order perturbation theory. We include
a cutoff in the r ' term in the potential, as other-
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TABLE I. Calculated values of bound states of bb.

AC ~ 2S+ iL J

Meson mass
(Gev)

p +

1
0++
1+
1++
2++

+

2 '
p+ +

1++
1+
p" +

1

1 $p

3P
1fP
1 3Q

1 P2
2i$
2 Si
13L)f
1 B2

c

2 Pf
gfs
g3$
2 Df
4 3$

9.41
9.43
9.72
9.78
9.78
9.73
9.86
9.88
9.95
9.95

10.08
10.09
10.09
10.21
10.22
10.27
10,51

wise this term is too singular to allow us to ob-
tain a solution. Our cutoff procedure is to re-
place r ' by r '(r'+a') ', where a is a parameter
chosen to give results fairly close to the results
we would obtain by evaluating the r ' term in per-
turbation theory without a cutoff.

Several of the lowest-mass levels calculated
with this model are given in Table I. Because,
in the case of &c, the model gives somewhat too
small a spin-orbit splitting and too small a split-
ting bebveen singlet and triplet spin states, we
guess that the same will be true for these && lev-
els. However, the separation between the ',
states comes out about right for the cc, and we
conjecture that this will be the same here.

We see from Table I that three I- =0 states with

, having masses of 9.43, 9.88, and 10.22
GeV, are in the mass region of the T. There is
also an I =2 state withe =1 of mass 9.95 GeV
in this region. All of these states are expected
to be considerably narrower than the 0.5-6eV
energy resolution of the experiment.

An interesting question for the model is how

many of these states contribute to the broad &

peak. Before we attempt to answer this question,
we consider the related question of what is the
threshold energy for the production of meson
pairs containing the new quantum number.

To a first approximation, the mass of each vec-
tor meson belonging to the ground state of the
quark-antiquark system is simply the sum of the

quark masses the meson contains. According to
this simple model, the p and + mesons, both of
which contain u and d quarks, should be approxi-
mately degenerate in mass in agreement with ex-
periment. Thus, thea and d quarks can be con-
sidered to have masses

mgg=m, +m„= 0.90 GeV,

m, =m, +no„= 1.94 CeV,

ms~* ma+m„= 5.11 GeV.

The observed masses of the K* and D* are

m~~(observed) =0.89 GeV,

m~~(observed) =2.01 GeV.

(4)

Thus the model predicts the mass of the K* to be
about as observed, but underestimates the mass
of the D* by about 0.07 GeV. If this same trend
holds for the K,~, its actual mass will be higher
than 5.11 GeV by at least 0.07 GeV, and probably
more. Furthermore, the splitting of the pseudo-
scaler g from the vector IC,* is expected to be
considerably less than the 0.14-6eV splitting of
the D and D* mesons. Therefore, it is likely
that the threshold for production of Kgq pairs
is a little above 10.22 GeV, or above the mass
of the 3'8, state of &&. If this is so, then there
ought to be three distinct '8, states of b& which
do not have enough energy to decay into R&E&
pairs. All of these states are expected to be nar-
row according to the Okubo- Zweig-Iizuka" (OZI)
rule, and therefore all of them should have ap-
preciable branching fractions into p p pairs.

The 'D, state of mass 9.95 GeV is also expect-
ed to be narrow by the OZI rule. However, ac-
cording to the Van Hoyen-Weisskopf" model,
the partial decay width of a vector meson into
lepton pairs is proportional to the square of its
wave function at the origin. But the wave func-

mu md ~mp

I ikewise the masses of the s, c, and b quarks
are about half the masses of the y, g, and &,
re spectively:

m=2m~ = 0.51 GeV, m, =
~z

= 1.55 GeV,

mq= gm —4.72 GeV.

These quark masses are in approximate agree-
ment with masses estimated by others, '"using
more sophisticated arguments. According to this
simple model, the masses of the%*, D*, and&, *
(the meson carrying the & quantum number) are
predicted to be
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tion of any state with I &0 is zero at the origin.
The model i.s not exact, but nevertheless we ex-
pect that an L = 2 state will have a small decay
width into lepton pairs. Because of the tensor
force, the 'D, state has a small admixture of '8, .
However, we have verified that in the present
case the coupling tensor force is too weak to
give substantial decay of the 9.95-6eV state to
lepton pairs. We therefore believe that it will
take an experiment with considerably more sen-
sitivity than that of Herb et al. ' to detect the pres-
ence of this state.

As in the case of the g and g', the Y, &', and
&" should have progressively larger widths.
This means that the branching fractions of these
particles into p. p, pairs should decrease with in-
creasing mass. Since the production cross sec-
tions of these particles will probably also de-
crease with increasing mass, it follows that
T(9.43) will contribute most to the broad peak ob-
served by Herb et al. , the &(9.88) next, and the
& (10.22), even if it is below the K,K, threshold,
will contribute least. Our qualitative argument
is not precise enough to let us state definitely
whether the production cross section of the
& (10.22), multiplied by its branching fraction in-
to p p pairs, is sufficiently large to contribute
significantly to the observed enhancement. We
therfore conclude that at least two, and possibly
three, very narrow states contribute to the &(9.5)
enhancement observed in the experiment of Herb
et al.

After this work was completed we came upon a
prior paper by Eichten and Gottfried, "who cal-
culated the spectrum for possible bound states
of heavy quarks and antiquarks using a Coulomb-
like plus a linear potential. These authors did
not include the other terms in the potential of
Eq. (1). However, since these terms make a
small contribution, our energy spectrum is simi-
lar to that of Eichten and Gottfried. In addition,
subsequent to completing our work, we learned of
a paper by Ellis et al.' also interpreting the & as
a bb state and discussing the production and de-

cays of low-lying vector states.
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