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required. Unlike excited-state photon echoes
which tend to become weaker as the oscillator
strength of the excited transition decreases, "
tri-level echoes should remain of constant inten-
sity as long as the lasers can produce 180'puls-
es for the transitions involved. Reference 11
shows how modest these power requirements
are, and it is thus reasonable to believe that tri-
level echoes will be observable when state 12) is
a highly excited state in virtually any element.
Tri-level echoes should thus be an extremely
powerful tool for relaxation studies in both pulsed
and cw experiments. Finally, we mention one
surprising observation: Under the conditions de-
scribed in the paragraph preceding Etl. (l), with

t, =~,=0, an undelayed signal at =&, occurs at
t = t, when state 12) is the O'S„, state and k, ~ k,
= —1. In this case no echo should appear accord-
ing to the analysis following Etl. (1), since ~,
& ~, and hence t,«,. The "echo" we see is not
fu11y understood at present, but we believe that
this apparent "echo" may actually be free-induc-
tion decay of the ensemble-average 10)- ll) super-
position which is created at t, as if it were coher-
ent shortly before at t, & t,.
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Compression of neon-filled glass microballoons irradiated by a four-beam laser sys-
tem has been measured directly by Stark broadening, opacity broadening, and spatial
profiles of Ne x-ray lines. For an 8.6-atm fill pressure and a 0.2-TN, 40-psec laser
pulse, the measured compressed neon density was 0.26 g/cm and the product pR was
2.5 x 10 g/cm .

The most important parameter in laser-induced
fusion experiments, namely the product, pR, of
compressed core density and radius, has been in-
ferred from the dimensions of the region emitting
x rays or e particles. " In this Letter it is
shown that spectral profiles of neon x-ray lines
from neon-filled targets yield direct information
on both p and pR. This measurement does not re-
quire one to assume that the hot core contains
the whole mass of the fill gas; nor does the prob-

lem exist of raising an uncertain core radius to
the third power. The targets in these experi-
ments were filled with neon only, at either 2.0-
or 8.6-atm pressure. However, the same diag-
nostic methods can apply to a mixture of neon and
a thermonuclear fuel; spectra like these obtained
here can be expected with only a small amount of
neon i.i future high-pR experiments.

The experiments were performed on the DELTA
four-beam laser system producing power on tar-
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FIG. 1. Microdensitometer traces (in same scale)
of the x-ray spectrum from imploded neon-filled glass
microballoons at two different fill pressures. pg in-
creases with fill pressure.

get of 0.15-0.2 TW in pulses of 40 psec full width
at half-maximum (FWHM). Neon x-ray line spec-
tra were obtained consistently on single-shot ex-
posures (optical density s 0.3) and no significant
changes were observed for power variations in
this range. A thalium acid phthalate crystal spec-
trograph equipped with a slit of width 11 pm was
used, giving simultaneously spatially integrated
spectra and spatially resolved spectra of resolu-
tion 13 pm (at 10 A). Typical target diameter
was 65 pm with a nominal wall thickness 0.6 pm.

Figure 1 shows part of the x-ray spectrum emit-
ted from glass microballoons filled with neon at
2.0- and 8.6-atm pressure. The Ne+' and Ne+'
x-ray lines are seen to be considerably broader
than the sodium lines from the glass shell. Their
width (FWHM as large as 20 eV) is much larger
than the width (-1.5 eV) due to crystal inperfec-
tion and finite size of the source. As we go from
2.0- to 8.6-atm fill pressure the intensity of neon
lines increases by varying amounts. For exam-
ple, the intensity of the Lyman-& line remains
nearly constant as the fill pressure increases.
This is clear evidence of saturation due to the
self-absorption (or opacity) of this line. As high-
er series members are progressively less self-
absorbed, the Lyman-P line approaches the black-
body limit for the 8.6-atm case. However, the
Lyman-y line remains optically thin: Although
it increases substantially with fill pressure it is
still much below the blackbody limit indicated by
the other lines. In terms of the optical depth at
line center (&,) we have then 7',(Lyn)» 1, &,(LyP)

AE (EV)

FIG. 2. Compression measurement: fitting a Stark
profile of~, = 7&& 10' cm ' to the experimental profile
of the Lyman-y line of neon (9.7 A).

-1, and w, (Lyy) «1. The results below turn out
to be entirely consistent with these results. Mov-
ing to higher series members the broadening due
to opacity decreases rapidly whereas Stark broad-
ening increases (other broadening mechanisms
are negligible). The spectrum therefore yields
two kinds of complementary measurements: The
Stark profile of the Lyman-y line gives the den-
sity (hence the compression) and the opacity-
broadened Lyman-& line gives the pR product.

Figure 2 shows a comparison of the best-fit
calculated Stark profile with the measured Lyman-
y line for the 8.6-atm case. Doppler and instru-
mental profiles were folded into the calculated
profiles but they only have a small effect. The
Stark profiles have been calculated by Hooper
and Tighe~ for the case of Ne ' lines perturbed
by a Ne" ion plasma. The electron temperature
T, during the emission of neon lines needs only
to be known approximately for these calculations.
Using the measured intensity ratio I(1s-3P)/f(1s'-
1s3P) we estimate T, to be 300 eV. The inten-
sity ratio between Ly& and LyP corresponds to a,

Planck distribution of about the same T. Figure
2 shows that the electron density for the 8. 6-atm
case is 7&10" cm ' which corresponds to a mass
density 0.26 g/cm'. The uncertainty in N, was
found to be + 25Vo by varying the temperature and
the assumed background level within their esti-
mated error brackets. Assuming that the whole
neon mass is uniformly compressed we derive a
diameter D=19 pm for the compressed neon core
and a pR value of 2. 5X 10 ' g/cm' (here R is the
average chord length, 2D/m). The compression
ratio is 38. For the 2.0-atm case the final den-
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sity is approximately the same and the compres-
sion ratio is -150.

We next analyze the optically thick Lyman-e
line profile which is shown in Fig. 3 for the two
pressure cases. Under the assumption of a ho-
mogeneous source, the line radiative transport
equation can be solved and gives (in local thermo-
dynamic equilibrium) I„=B„[1—exp( —7'P„/P )],
where I, is the observed line profile at frequency
v, B„ is Planck's function (blackbody limit) for
a temperature T, P„ is the intrinsic line profile,
and 7, the optical depth at line center (or at fre-
quency at which P, is evaluated). If &,» 1, I„
has a Qat top of intensity B, and is wider than
the source (i. e. , Stark) width. This is what is
indicated by Fig. 3 where the measured Lyman-
+ profile is wider than the Stark width calculated
for the density found from the Lyman-y line. Fit-
ting I, profiles to the observed profile for the
8. 6-atm case, we find 7'o/P, = 2x10" sec ', us-
ing the Stark profile for K, = 7 & 10" cm '. The
optical depth is related to pA through pA = (&,/
Pe)(rnMc/we'f)b ' where M is the ion mass, f is
the line oscillator strength, and b is the fraction
of all neon ions which are in the ground state of
Ne+'. Over a wide temperature range in which
Ne ~ emission is significant3 b 0. 3 which gives
pB = 2. 2 x10 ~ g/cm'. This value agrees well
with that obtained above. The optical depth at the
peak of the (electron-broadened) unshifted Stark
component is 100. For the 2-atm pressure
case, pB lx10 ' g/cm'.

We finally fit Stark profiles to the Lyman-p
line. Figure 4(a) shows the best fit for the 2-atm
pressure case which yields the same density val-
ue as obtained from the Lyman-y line: N, 7
x 10" cm '. For the 8.6-atm case [Fig. 4(b)]
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the same profile has the wrong width and shape.
However, fitting a profile from a uniform source
with the same density but an optical depth at line
center ~, =0.5 (or ~=1.2 at the peaks) we get
good agreement with the experimental profile.
To check consistency we calcula. te 7', (LyP) using
the pA values obtained from the Lyman-& line.
We get for the 2-atm case 7, -0.4 and for the 8.6-
atm case &,-0.8 (for the peaks of the profile r
-2.5~,).

We finally consider spatial profiles of neon
lines. As an example, Fig. 5 shows the spatial
profile of the neon Lyman-P line for the 8. 6-atm
case. The diameter of the compressed neon core
(especially after subtracting the continuum) is
seen to agree very well with. the value (19 pm) in-
ferred from the spectral profiles.

In conclusion, Stark broadening, opacity broad-
ening, and spatial profiles of neon x-ray lines all
give consistent, direct measurements of both the
compressed density and pA of a laser-imploded
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FIG. 3. pp measurement: opacity-broadened Lyman-
n line of neon (12.13 A} for two filling pressures, The
FTHM is 7.5 and 12 eV whereas the Stark width as
inferred from Fig. 2 is 5.5 eV (ion broadening orgy).

FIG. 4. Compression measurements: Fitting of a
Stark profile of N =7&&10 cm ~ to the experimental
profile of the Lyman-P line of neon (10.24 A) at (a) 2

atm fill pressure and (b) at 8.6 atm fill pressure. 7-0 is
the assumed optical depth at line center.
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impurity content the dominant effect would be the
cooling of the fuel by radiation losses, thereby
enabling a higher compression.
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FlG. 5. Spatial profi1e of the Lyman-p line of neon
(10.24 A), and the nearby continuum. The bar indi-
cates the compressed neon diameter as inferred from
spectral profiles analysis.

target. Neon doping in future laser fusion tar-
gets may be interesting not only as a diagnostic
probe but also as a means of controlling the im-
plosion dynamics. ' At low enough impurity con-
tent the dominant effect wouM be the inhibition of
heat loss from the fuel to the tamper; at higher
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The absorption of intense laser light is found to be reduced when targets are irradiated
by 1.06-p. m light with long pulse widths (150—400 ps) and large focal spots {100—250 pm).
Estimates of Brillouin scatter which account for the finite heat capacity of the underdense
plasma predict this reduction. Spectra of the back-reflected light show red shifts indica-
tive of Brillouin scattering.

In laser fusion applications it is important to
understand the absorption of laser light when the
product of intensity and the square of the wave-
length exceeds - 10"W iL m'/cm'. ln such experi-
ments, ' ' it was generally found that Brillouin
scatter "is limited at a low level, an effect
which has been attributed theoretically'" to the
small ma, ss and hea, t ca,pacity of the small under-
dense plasma. . Kith the advent of more powerful
lasers, it is becoming common to investigate the
absorption of intense light in experiments with
long pulses and large focal spots. These experi-
ments, characterized by a, much larger region of
underdense plasma, more closely approximate

future experiments with shaped pulses. For ex-
ample, a, simple estimate shows that the size of
the underdense plasma L=R, where R is the ra-
dius of the focal spot, provided that the pulse
length is long enough for plasma to expand that
far.

%'ith la,rge regions of underdense plasma, stim-
ulated scattering of the incident laser light be-
comes a concern. First we briefly present a, sim-
ple estimate for Brillouin scattering, which takes
into account the finite heat capacity of the under-
degse plasma. Although crude, this model suf-
fices to estimate magnitudes and also to empha, -
size the strong ion heating concomitant with the
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