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We report a new Doppler-free rephasing effect, the {vi-level echo, which we use to
study Ar-Na collisional relaxation of several 3%, /2—n2D3 /2 Ssuperpositions in atomic Na.
Three excitation pulses are required: The first resonantly excites a selected state,
while the others resonantly couple this state with a higher-lying state. This sequence
produces a delayed rephasing on the resonance transition which radiates strongly; the
radiated intensity monitors relaxation in the higher-lying stepwise-excited state.

It is well known that an echo, i.e., a rephas-
ing of superposition states, may be formed in a
sample of inhomogeneously broadened two-level-
systems. First observed by Hahn in spin systems
(spin echoes)' and later by Abella, Kurnit, and
Hartmann in systems of electronic states (photon
echoes),? these two-level single-frequency echoes
have proven useful in the study of homogeneous
relaxation. This basic phenomenon has recently
been extended by the observation® of the Raman
echo,* which is similar to the photon echo except
that the two states are connected by a two-photon
interaction matrix element. In this Letter we
present a new type of echo peculiar to multilevel
(three levels or more) systems. We have dis-
covered that for a sample of multilevel systems
inhomogeneously broadened by the Doppler effect®
a rephasing of a coherent superposition between
a particular pair of levels can be induced even if
the constituent systems of the sample spend most
of the time between their first excitation and the
echo dephasing in a superposition between a dif-
fevent pair of levels. The echo signals produced
are large since they arise on an allowed transi-
tion. Through them one can study the relaxation
of a step-wise, resonantly excited superposition
which would ordinarily be inaccessible. We term
this effect tvi-level echoes. Similar effects were
predicted several years ago by Aihara and Inaba,®
who described them as anomalous photon echoes.
Related effects were observed in three-level spin
systems by Hatanaka, Terao, and Hashi.” We
have observed tri-level echoes in Na on the 3%5,,,-
32P,,,n*D,,, m=4, 6, 7, 8, and 9) three-level

systems, and we have used it to measure the Ar-
Na collisional decay constant of the Na 3%5,,,-
4’D,,, and 3%S,,,-7°D,,, superpositions.

Consider a gaseous sample of three-level sys-
tems whose atomic states 10), (1), and 12) have
respective eigenenergies 7§, 7#Q,, and 7ZQ, or-
dered for simplicity as Q,<®,<Q,. The atoms
are initially in state |0). The transitions 0-1
and 1-2 are E1 allowed. The sample is irradiat-
ed at times ¢,<?¢,< ¢,; the ith excitation pulse has
central frequency w; and wave vector k;. We
specialize to w,=9,; and w,=w,=Q,,, where
Q;;=19; -Q;1.% Under these conditions, com-
plete rephasing on the resonance transition pro-
ducing an echo at w,=w, + w, — w, will occur at
{=1, when and if all atoms at X are in superpo-
sition states of identical relative phase ¢ and are
phasé matched according to ¢ () =§4' %. Inthe
absence of velocity-changing collisions, an atom
having velocity ¥ and position X at time ¢ must
have come from X; =% -V(t - ;) at t=¢;,. The
atomic superposition created between states |0)
and 12) by excitation pulses 1 and 2 has the phase
factor expli(&,*%, +k,*%,)]. The third pulse trans-
forms this [0)-[2) superposition into a [0)-11)
superposition, introducing an additional phase
factor exp(-ik,*%,). For this atom the net phase
of the 10)-11) superposition is thus

¢=E1‘§1+E2‘§2—E3°§3:¢0—'\7°A’(t), (1)
where
Po= (El +E2 ‘Es)o—i
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and
Rt)=(t -t )k, + (¢ —t,)k, - (t = 1)K,

Under the assumption that the entire Doppler dis-
tribution is equally excited, the dipole moment of
frequency w,, produced at X when ¢>¢,, is propor-
tional to { ') where the brackets indicate an aver-
age over the velocity distribution. Assuming
perfect phase matching, i.e., k,=k, +k, -k,

the radiated intensity / at w, is proportional to
exp(—%vozlxlz), where v,=(2kT/m)"?, k is Boltz-
mann’s constant, 7 is the temperature, and m is
the mass of the atom. The intensity peaks when
the various atomic dipoles rephase so as to mini-
mize |A(#)l. Setting ¢,=0, this occurs at the
“echo” time ¢, given by £, = (t,k, -t K,) k,/Ik,I2

In terms of ¢,, A(f) can be expressed as A(t)= (¢
-t)k, -tk, +t&,, wherek;, is the component
of k; normal to k,. From the above it should be
clear that complete rephasing, i.e., A(t,)=0,
can only occur if the k vectors are coplanar. A
case of special interest is k,* k,= -1 and k, =k,
for which k,=k, and A(f)= (¢ -#,)k,. Under the
assumption that dispersion may be neglected, re-
phasing will in this case occur at t,= (t; ~t,)w,/
w, as long as £,>1,; the latter condition is in-
sured if w,>w, t,/(t,—1,). Since k,=k,, the echo
is in this case emitted along the direction of
propagation of pulse 1, Noncollinear excitation,
however, is desirable in order to avoid satura-
tion of the detection system by the first excita-
tion pulse. Unlike photon echoes, tri-level ech-
oes may easily be phase matched in the noncol-
linear configuration. Like photon echoes,® how-
ever, tri-level echoes do not, in general, re-
phase perfectly when the beams are not collinear.
For tri-level echoes perfect rephasing in the
noncollinear case, which requires that the quan-
tity £,k,, —t K, vanish, only occurs for certain
values of ¢, and ¢, when k,,llk,,. For small de-
partures from our case of special interest this
quantity is, however, always rather small. We
may evaluate the echo intensity I for the geome-
try of Fig. 1 (6 «<1) and find

6% 20,2 | (w, - w,) ~ 2
I:IoeXp<‘ 222 2 [ 22(.01 l(ta—tz)"tajl >’

where [, is the intensity when 6 =0, and where

we have neglected the effect of the noncollinearity
on the size of the beam-overlap volume. For the
relatively unfavorable case of w,/w,=1.5, with
t,=0, I1(6 =0.02 rad) is smaller than I (9 =0) by
only a factor of 10 at ;=50 nsec. Also, for the
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experimental situations that we have examined,
t, differs insignificantly from the value it has
when the excitation is collinear,

It should be noted that in contrast to a two-
pulse, two-level photon echo, a tri-level echo
cannot generally be explained simply in terms of
a reversal of the relative phase of each atomic
superposition between a particular pair of lev-
els. '® However, using appropriately generalized
concepts, an analogous formulation may be use-
ful. We leave elaboration on this topic to a future
publication.

In our experiment the Na 32S,,,, 3°P,,,, and
n®*D,, states (n=4,6,7,8,9) correspond to |0,
[1), and 12), respectively. The 525,,, state has
also served as state 12). These states are excit-
ed by 7-nsec (full width at half-maximum) FWHM
excitation pulses produced by two nitrogen-laser-
pumped dye lasers. The first dye laser, of fre-
quency w,; resonant with the D,-line transition,
has a 750-MHz spectral width, while the second,
of frequency w, (=w,), has a 10-GHz spectral
width. The output of the second dye laser is
split; an undelayed part is used as pulse 2, and
the other part is optically delayed as pulse 3.
Laser peak power is ~50 W for 3-mm beam di-
ameters. By suitable optics the laser pulses are
made to cross inside a sodium cell as shown in
Fig. 1. The angle 6 of Fig. 1 was usually chos-
en to lie between 20 and 50 mrad. The cell con-
sists of a 65-cm-long stainless-steel tube with

FIG. 1. Relative orientations of the coplanar excita-
tion pulses with propagation vectors &, k,, k;, and
the resulting echo with propagation vector k, in the
experimental arrangement used to observe the 3%, /o~
3%P,/y~12) tri-level echoes, where |2) is either the
4’D3;, or the 7°Dy,, state, In'the case where |2) is
the 4°Dy,, state, 6’< 1 mrad when § = 50 mrad.
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windows on its ends. Foreign gas can be intro-
duced into the cell, and its pressure is measured
by a Baratron capacitance manometer. The sodi-
um pressure is determined by its vapor pressure
at the oven temperature. The echo, whose fre-
quency is w,, propagates nearly antiparallel to

&, and is detected on a photomultiplier. The
3%S/,-3%F,,-4°D,,, echo typically contains about
10°-107 photons. The echo size decreases quite
slowly as we go to higher D states.

When w, is resonant with the 568. 3-nm 3°F,,,-
4?D,,, transition, w,/w,=1.038. Thus when f,
=1,=0and {;=195 nsec, Al=1,~{, should be
about 7 nsec. We have indeed observed this de-
lay of the echo from the time of the third pulse.
A longer delay Al is expected when w, is reso-
nant with the 449. 4-nm 3?P,,,-7%D,,, transition.
Here, with {,={,=0 and {,=81 nsec, Af should
be ~ 25 nsec. The observed delay of 23 nsec
agrees quite well with this value when one con-
siders the 7-nsec pulse widths and the difficulty
of making ¢, and /, equal. We have also observed
that the echo intensity changes when a magnetic
field is applied perpendicular to E4; this suggests
the presence of quantum-beat effects.

In the present experiments the superposition
P,, which produces the echo decays according to
P~ exp{ - [rlo(tz - tx) + on(ts - tz) + rlo(t4 - ts)]}'
Here T';; denotes the total homogeneous decay
rate, 1/7,, for the 14)-1j) superposition. We
rewrite I';; as T';;=T;,°+n;,;p, where p is the
foreign-gas pressure, 1;;p is the decay rate due
to Na-foreign-gas collisions, and I';;° is the de-
cay rate of the 14)-1j) superposition in the ab-
sence of the foreign gas. For our experiments
t,=1,=0. The dependence of the echo intensity
I on the foreign-gas pressure is therefore I(p)
~1p,ol2~ e P?, where

B= 2{7720 + M 30(wy = w,) /""’1} L,

With Ar as the foreign gas, we have measured 8
by varying p at fixed values of {;. The decay rate
N,, may thus be determined from a knowledge of
B andn,,, and the Ar-induced 0-2 transition line-
width Av(FWHM) is given in hertz/Torr by n,,/7.
Using our preliminary experimental values of 8
and the value of7,, measured by the photon-echo
technique,* (47,,)"*=4.2%0. 3 nsec Torr, we ob-
tain the following Ar-induced linewidths at a tem-
perature T =410°K: For the 3%S,,,-4?D,,, transi-
tion, Av=60+10 MHz/Torr; and for the 325, ,-
7Dy, transition, Av=160+20 MHz/Torr. In

the former case no change in Av is observed as
¢, is varied from 27 to 106 nsec. The 3S-4D

Ar-induced linewidth has been measured by two
other recent experiments. Liao, Economou,

and Freeman,' using a Doppler-free two-photon
transient technique, find Av=47 MHz/Torr at
670°K, and Biraben et al.,'® using Doppler-free
two-photon absorption, find Av=52+5 MHz/Torr
at 560°K. For an ideal gas, the value of Av, at
temperature 7T, is related to Av, at temperature
T, by Av,=Av,(T,/T,)"%, /0,, where 0; the the
Ar-Na collisional cross section at temperature
T;; hence the two experiments give 60 MHz /Torr
and 61+ 6 MHz /Torr, respectively, at our tem-
perature if we assume 0,=0,. Thus, consider-
ing the experimental uncertainties, the three val-
ues are in good agreement for any reasonable
velocity dependence that o is assumed to have.

It is interesting to note that to within experimen-
tal uncertainty our values of Av are identical
with the 32P,,,-4?D,,, and 32P,,,-7?D,,, Ar-in-
duced decay measurements made by the excited-
state photon-echo technique.!' This result sug-
gests that the P state plays a small role in the
Ar-induced decay of these P-D superpositions.

Other examples of tri-level echoes are the fol-
lowing: Let w,=w, =Q,; and w,=9Q,,. Kk,=k,
and either (i) k, and k, are antiparallel, and ,
<Q,<Q,, or (ii) k, and k, are parallel, and 2,
<Q,<9,, then an echo of wave vector k, is formed
att,=t,w,/w,+1¢,ift,=0and t,>{,. Further-
more, if Q,<Q,<Qy, 0= W=, W=y, Ky 5s
are all parallel and £, =0, then an echo of fre-
quency w,=8,, occurs at {,=¢,+ f,w,/w,. We
have already observed the latter echo. Many
other variations of the basic tri-level echo scheme
should be possible. A variety of echoes involv-
ing more than three levels (“multilevel” echoes)
and/or arising from a sequence of more than
three excitation pulses are possible as well. We
note that it is also correct to visualize the tri-
level echo as delayed Doppler-free four-wave
mixing.

In summary, we have observed a new rephas-
ing phenomenon, the tri-level echo. The rephas-
ing, which occurs between two levels connected
by an electric-dipole moment in a three-level
system, depends for part of the interval between
excitation and echo on superpositions which can-
not radiate. Thus the properties of these nonra-
diating superpositions can be studied. Unlike
Raman echoes or the sum-frequency analog of
Raman echoes, which provide information about
the same type of superpositions, tri-level ech-
oes are produced primarily by on-resonance ex-
citation. This means that low laser powers are
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required. Unlike excited-state photon echoes
which tend to become weaker as the oscillator
strength of the excited transition decreases,
tri-level echoes should remain of constant inten-
sity as long as the lasers can produce 180° puls-
es for the transitions involved. Reference 11
shows how modest these power requirements

are, and it is thus reasonable to believe that tri-
level echoes will be observable when state 12) is
a highly excited state in virtually any element.
Tri-level echoes should thus be an extremely
powerful tool for relaxation studies in both pulsed
and cw experiments. Finally, we mention one
surprising observation: Under the conditions de-
scribed in the paragraph preceding Eq. (1), with
t,=t,=0, an undelayed signal at w=w, occurs at
t=t, when state |2) is the 5%, state and &,* &,

= —1. In this case no echo should appear accord-
ing to the analysis following Eq. (1), since w,
<w, and hence {,< t,, The “echo” we see is not
fully understood at present, but we believe that
this apparent “echo” may actually be free-induc-
tion decay of the ensemble-average |0)-11) super-
position which is created at ¢, as if it were coher-
ent shortly before at £,< ¢,.
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Compression of neon-filled glass microballoons irradiated by a four-beam laser sys-
tem has been measured directly by Stark broadening, opacity broadening, and spatial
profiles of Ne*® x-ray lines. For an 8.6-atm fill pressure and a 0,2-TW, 40-psec laser
pulse, the measured compressed neon density was 0.26 g/cm3 and the product pR was

2.5%x 10”4 g/cm?,

The most important parameter in laser-induced
fusion experiments, namely the product, pR, of
compressed core density and radius, has been in-
ferred from the dimensions of the region emitting
x rays or « particles.!'? In this Letter it is
shown that spectral profiles of neon x-ray lines
from neon-filled targets yield divect information
on both p and pR. This measurement does not re-
quire one to assume that the hot core contains
the whole mass of the fill gas; nor does the prob-
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lem exist of raising an uncertain core radius to
the third power. The targets in these experi-
ments were filled with neon only, at either 2.0-
or 8.6-atm pressure. However, the same diag-
nostic methods can apply to a mixture of neon and
a thermonuclear fuel; spectra like these obtained
here can be expected with only a small amount of
neon in future high-pR experiments.

The experiments were performed on the DELTA
four-beam laser system producing power on tar-



