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Specific heat C& and thermal conductivity s measurements between 0.1 and 10 K on the
superconducting (T, = 2.53 K) and structurally disordered metal Zro YPdo 3 exhibit an ap-
proximately linear term in p& and a T"~ dependence of z below Tc. The magnitudes of
these terms are close to those found for insulating glasses, thereby suggesting that dis-
order-induced localized excitations exist at similar densities in very different classes of
disordered solids,

Metallic glasses present a unique opportunity
for understanding how the basic low-temperature
thermodynamic properties and phonon and elec-
tron transport of metals are affected by structur-
al disorder. For example, although there is di-
rect evidence' for a preferential softening of
transverse phonons in the disordered state rela-
tive to the crystal, leading to an enhanced phonon
specific heat at low temperatures, there is no
way to predict with any certainty the correspond-
ing changes of the electronic specific heat. Re-
cent measurements of thermal conduct. ivity, '
sound velocity, ~4 and resonant acoustic absorp-
tion4 in metallic glasses indirectly suggest that
there may exist extra localized excitations at en-
ergies below. 1 K similar to those found in insulat-
ing glasses. ' ' Direct evidence in disordered
metals for these excitations, usually described
as two-level configurational or tunneling sys-
tems, ~' would support the intrinsic nature of these
states in the amorphous phase, "particularly
since metallic glasses, unlike insulators, pos-
sess rather closely packed structures with mass
densities only a few percent lower than those in
their crystalline phases.

In the present work, we have measured the

specific heat Cp of a bulk disordered metallic
a,lloy, ~""a-ZrQ 7pdQ 3p between 0. 1 and 10 K.
Since this material is suPerconducting helot 2.58
K, it is possible to evaluate the individual contri-
butions to C~ in this temperature region. We
find that the observed specific heat cannot be ac-
counted for solely by the phonon a,nd electron con-
tributions. An additional contribution, approxi-
mately linear in &, is observed, whose magni-
tude is strikingly similar to that observed below
1 K for insulating glasses. In addition, we ob-
serve a thermal conductivity in the superconduct-
ing state whose temperature dependence is T",
also remarkably similar to that found in insulat-
ing glasses. We suggest that there are no funda. -
mental differences between the disorder-induced
excitations found in this disordered metal and
those found in insulating glasses.

The sample of ZrQ 7pdQ 3 was prepared in bulk
form from the melt" as a ribbon of cross section
0. 085&&0. 0032 cm. X-ray diffraction measure-
ments yielded results similar to those found pre-
viously. " A 1.2 m length of ribbon (0. 259 g)
was wound into a spiral of 1 cm o. d. and glued
with a minimum amount of GE 7031 varnish onto
the sapphire-plate sample holder of a calorim-
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eter'~ in a 'He- He dilution refrigerator for low-
temperature C~ measurements, &&2 K, or a
pulse calorimeter for» 1.5 K. Good agree-
ment was obtained in the region of overlap. The
addendum contributed 2070 of the total heat ca-
pacity at the lowest temperatures. The onset of
superconductivity was observed at T,=2. 53+ 0. 01
K with a (10-90)Vo resistive transition width of
10 mK and a Cp width of 30 mK. The thermal
conductivity of a 0. 5 cm length of ribbon was
measured by a two-heater one-thermometer tech-
nique. " The carbon thermometer was calibrated
during each run against a cerium magnesium ni-
trate-superconducting quantum interence device
(SQUID) thermometer ".Because of the very low
thermal conductance of the sample, the electrical
leads had to be of extremely low thermal conduc-
tance to avoid short thermal paths to the bath.
Each of the six 8-cm-long leads consisted of a
few -5-pm filaments extracted from NbTi fila-
mentary wire. The ambient magnetic field was
less than 1 Oe.

The specific heat (Fig. 1) varies over more
than four orders of magnitude between 0. 1 and
10 K. Below the discontinuity at &„C~ drops
rapidly until &= 0. 4 K, below which a roughly lin-
ear T dependence is visible. The data were fit-
ted above &, by the expression

Cq —A&+BT + CT,

and below T, by
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FIG. 1. Heat capacity of the superconducting dis-
ordered metal Zro 7Pdo 3. The solid line is a fit to
the data using Eqs. (1) and (2). The individual compo- .

nents are indicated as follows: . . . ., electrons above
T„——,electrons below p ~ —.-- phonons; and ——- -,
extra contribution linear in 7'.

CI, = DT +BT'+E exp(- E/T)

[T/T ](4+&8'g) (2)

In Eq. (1), the first term accounts predominantly
for the normal electronic contribution, while the
second and third terms describe the phonon spe-
cific heat. The first term in Eq. (2) is included
as the simplest representation of the extra spe-
cific heat at the lowest temperatures. We take
the same phonon T' term above and below &„
but neglect the (small) &' term in the supercon-
ducting state. The third and fourth terms in Eq.
(2) represent the contribution of the electrons
below T,. The analytical form of the fourth term
was found to be a convenient representation of the
deviations of the Muhlschlegel numerical calcula-
tions" from a simple exponential. The fourth
term is significant only for 1.5 & T & 2. 53 K.

A nonlinear least-squares fit of Eqs. (1) and
(2) to the data was performed with &,= 2. 53 K.
The various terms" are indicated by broken lines

in Fig. 1 and the sum by the solid line. Good
agreement with the data is obtained except for a
few points at the lowest temperatures which lie
no more than l(Po above the calculated fit. Data
were not taken below 90 mK because of long inter-
nal equilibration times, which may also account
for the high values of the last few points. The
three contributions below T, are comparable at
T = 0. 5 K but the linear term rapidly dominates
at lower T. We note that the coefficient of this
term is 2. $0 of the coefficient of the linear term
above T, . We assume that the linear term below
7, is not due to normal-state electrons, "and
thus it should also be present above T,. The elec-
tronic term is therefore 2. 2' less than A, which,
for comparison, is 4. 3 times larger than that of
Cu. The T' coefficient corresponds to a Debye
temperature OD of 180 K. The ratio of supercon-
ducting- to normal-state electronic specific heat
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at T, is 2. 61, or only 7%%uo larger than expected
from theory. "Alternatively, the exponent I" can
be identified with &o/&II, where &o is the energy
gap at T=0, yielding &o=1.47kBT„or 16%%uo less
than the theoretical value. The material there-
fore seems to be a fairly well-behaved supercon-
ductor.

The thermal conductivity (Fig. 2) is described
quite well below 1 K by a single power law,

g(W cm ' K ') —[(6.6+1)x10 4]T"9"o»

for over an order of magnitude in temperature.
Above T„ the data vary linearly as ~ (W cm '
K ') = (6.7&&10 ')T. The Wiedemann-Franz law
predicts an electronic thermal conductivity which
is only one-sixth of the observed &, indicating
that w is dominated by phonon conduction above

The observed & above &, agrees both in mag-
nitude, within 5(P/o, and in temperature depen-
dence, linear in &, with the phonon conductivity
expected from normal electron-phonon interac-
tions. ' The rise in ~ just below T, can then be
understood as decreased phonon-electron scat-
tering due to the rapidly decreasing number of
normal-state electrons below &,. The &"de-

pendence of & must therefore arise from some
other scattering mechanism. Even though we
expect the phonon mean free path to become corn-
parable with the sample thickness below 0. 3 K,
we do not observe behavior characteristic of
boundary scattering. '"

The linear specific heat and approximately
quadratic thermal conductivity of this material
below &, are strikingly similar to those proper-
ties in typical insulating glasses, ' for which the
coefficient of the linear term in C~ lies in the
range (0. 4-6) && 10 ' m J/gE' and the coefficient of
the T'9 thermal conductivity is in the range 10 4-
10"' W cm ' K '. The present values are thus
near the low end of the C~ range and the high end
of the I(.

' range. If we interpret the linear specific
heat as arising from two-level configurational
systems as in amorphous insulators, we obtain
a density of states"

In the Debye approzimatipn" we find eD —180 K
and estimate a transverse phonon velocity e~
—= 1.6&10' cm/sec. We can then use the expres-
sion for phonon conductivity as limited by reso-
nant scattering from two-level states, "

K (T) = 1.645 (pkB '/IT'h') (vt. /nyl, ' +2vr/nz r') T',

10 I I I I I I I

E
1O'

I-
0
I-
O
Cl

C3
O

UJ~ 104

1O'
0.1

I I I I I I I II

10

T (K)

FIG. 2. Thermal conductivity of the superconducting
disordered metal Zrp yPdp

to determine ny&' if we make the reasonable as-
sumptions that ~1. ——2v& and yl. ' —2y~', where yl.
and y~ are the deformation potentials for the two-
level systems coupled to longitudinal and trans-
verse phonons, respectively. Here, ~™is the den-
sity of two-level systems which are active in res-
onantly absorbing phonons and which for fused
silica is" approximately 4%%uo of n„ the density of
states calculated from the linear heat capacity.
We calculate ny&' ——5~10' erg cm ' for a-
Zr

Q 7PdQ 3 This value is surprisingly c1ose to
the value of 9&10' erg cm ' found in fused silica.

We conclude that the anomalous specific heat
and thermal conductivity of this disordered metal
below 1 K are due to the intrinsic defects char-
acteristic of the disordered state. While the
microscopic nature of these two-level states is
yet unknown, it is surprising that their density
and their coupling to acoustic phonons in a dense-
ly packed disordered metal are so similar to
those properties in the much more loosely packed
network structures of dielectric glasses.
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