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Exact solutions for the motion of a particle in a medium with site diagonal and nearest-
neighbor off-diagonal dynamic disorder are presented for the first time. Besults obtained
for the diffusion constant are of relevance to different areas of current interest, such as
charge or exciton motion in molecular solids, and motion of light adsorbates on substrates
with weak surface potentials.

Numerous studies' ' of the electronic properties of disordered systems have been conducted since
the pioneering work of Anderson showing the absence of diffusion in certain random lattices at abso-
lute zero temperature almost two decades ago. Most of these studies have dealt with model systems,
generally one dimensional, consisting of static site diagonal disorder and focused their attention on
single-particle properties like the behavior of the single-particle density of states, the nature of the
single-particle states, etc. Only recently, a few microscopic studies"' of the quantum transport prop-
erties have been reported. An aspect of disordered systems which has received comparatively little
attention' ' is the behavior of particle motion under the influence of dynamic (i.e. , time-dependent) dis-
order. In this Letter we report the first exact solution for the motion of a particle in a system with
site diagonal and nearest-neighbor off-diagonal dynamic disorder. This exact solution has relevance
to many current areas of study which we briefly identify at the end.

The model Hamiltonian reads

If= l g ~ .(Im&&nl+ ln&&ml)+ s Z P.„(t)(lm) &nl+ ln) &ml),
m, n m, n

where 0. and o. „denote the site energy, and the tight-binding transfer integral between the mth and

nth sites, respectively, for a one-dimensional periodic chain of lattice constant a (which we take as
unity in the following). The P„„(t)define the time-dependent disorder introduced into the periodic
chain by the action of a stochastic medium (say, e.g. , phonons). We take the p „(t) to be Gaussian
random variables with a white-noise spectrum and specified by & P „(t))=0 and

&P n(t)P z z(t )) =g(m n)t)(t t )(t) z (5„ i+ 0 s &5 s&
—(5 „f)

where & ) denotes the average over all realizations of the random configurations. g(m-n} measures
the strength of the disorder, which for thermally induced disorder (i.e., phonons) will be a function of
the temperature and the appropriate car»rier-phonon coupling strength. This explicit relation, as well
as the 6-function behavior in time of the correlation function for phonons, will be shown later to be
justifiable at temperatures high compared to characteristic phonon energies. Exact solutions for site
diagonal disorder' [i.e. , only P„(t}nonzero] and the leading-order correction" due to nearest-neigh-
bor off-diagonal disorder [i.e. , p „&„»(t}=Ojhave been reported recently. However, in the following
we present an exact, closed-form, analytic result for the diffusion constant in the presence of site di-
agonal and nearest-neighbor off-diagonal dynamic disorder.

We follow the Heisenberg equation of motion of the single-particle density matrix which provides the
probability of finding the particle at site n at time t if it were at site m at t=0. We use functional-de-
rivative techniques and exploit the following result" valid for any set of Gaussian random variables

(X,(t)} and a functional of this set F({X,.(t})):

&»;(&)»((»;(&)&)& Zf« &»;(&)»,(=& )&( ~'» ,, )''
The equation of motion for the density matrix averaged over the random configurations is easily ob-
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tained as

iep(k, k'; t) = J dq dq'([K(k, q; t)6(k'-q') -K(q', k'; t)6(k -q)]p(q, q';t))+ (e»- e» )(p(k, k'; t)), (4)

where we have written the equation in the momentum representation by using the definitions
+ OO

(5a)

+ oo

K(k q. t) Q P (t)e i»n +iem
2n =-- ™ (5b)

Utilizing Eq. (3) in evaluating terms of the type (K(k, q; t)p(q, q; t)) in Eq. (4) with the aid of (5b) and

(2), we obtain a closed equation for the single-particle density matirx by virtue of the white-noise na-
ture of (2). Equation (4) thus becomes

where

=- [I'+ i(e„- e„,)](p(k, k', t))+—
J~

I'(k+-, k'+- (p(k+q, k'+q; t))dq (6)

I'=2 g g(m)
m=- 'o

F(q, q') =2 Q g(m)(cos [m(q+q')]+ cos [m(q -q')])-g(0)
-m= -~

%e note that the loss of translational invariance due to the disordered nature of the system has led to
a dependence of (p) on k and k'both, rather than simply on k -k'. Henceforth we restrict our analysis
of Eq. (6) to site diagonal and nearest-neighbor off-diagonal disorder only [i.e., P„(t)= 0 for all (m(
) (n+ 1(]. Thus we retain only u „and a» terms for the nnnrandom part of (1). If we denote
o.„„byo. and introduce the variables s = (K+K'}/2 and u = (K-K')/2 and write (p(K, K'; t)) =—e 'F(u,
s; t), I' = 2g, + 4g„Eq. (6) gives

&F(u, s; t} m

=X'(u, s)F(u, s; t)+B(u) F(u, q; t)dq+ b cos(s+q)F(u, q; t)dq, (8)

where

g(u, t) =B(u)J,F(u, q; t)dq,

k(u, s; t) = b J cos(s+q)F(u, q; t)dq.

Substituting the expression for F(u, s; t} from Eq. (9) into (10) and (11), and taking the Laplace trans-
form of the resulting equations for y and h, we may write

(10)

(11)

where we have usedg, =g „X(u, s)=4in sinusins, b=2g, /w, B(u)= bco2su +g, /n; Furthermore, with
the initial condition, F(u, s; t=0) =A, a constant, Eq. (8) transforms into

t
F(u, s; t)=Ae '" "'+, e '"'"" "[y(u, 7')+k(u, q; 7})dv,

4 (u, p) =l(2iiABf (u,p)+Bf dq fH I,

H(u, s;p) =AbI+bIE(27iABf (u,p)+Bf dq fH l+b J cos(s+q) fHdq,

where

I =I(s,p) = f cos(s+q) f (u, q;p)dq,

(12)

l =l(u, p) = 1/[1 —27iBf (u, p)], f (u, p) =I'(Z, (4cxt sinu)),

f =f (u, q;p) =S(e " ' '), H =H(u, q;p) =SQ(u, s;t)), C(u, p) =Z(y(u, t)).
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Here J'0 is Bessel's function of order zero. Expanding the cos(s+q) factor in the last term of (13) re-
duces (12) and (13) to a set of three simultaneous algebraic equations for the functions

Q, = J dq fH, Q, = f" dqcosq fH, Q, = f dqsinq fH.

The resulting solutions for Q„Q„and Q, are then substituted into (12) and (13) to get exact solutions
for 4(u, p) and H(u, s;p). The inverse Laplace transforms of C(u, p) andH(u, s;p) give y(u, t) and&(u,
s;t), which when substituted into Eq. (9) give the exact expression for F(u, s;t), and thus the density
matrix (p(u, s;f)) =er'F(u, s;t).

The main result of interest to us is the mean-square displacement of the particle, which is given by

1 &' O'(p(u, s;t)) 1e r' "" "'"+'
p,

O'F(u, s;p)
4" -g ~ " 0 4 2~~ ~ m &-i+6 8+ u =0

(14)

where F(u, s;p) =R(F(u, s;t)). We may thus circumvent a certain amount of tedious algebra by evaluat-
ing (R') directly, employing the expressions for H(u, s;p) and 4(u, s;p) in evaluating (O'F/Su')! „,. The
exact expression for the mean-square displacement is found to be

I 12 ' ' ' I" 'r'(r+2g, )
" I' r'(r+2g, )' I'(I +2g, )

r' 'r*(r+2z)*'r(r+ az)*'r'(r+2z) r* 'r'(r+2z)'r(r +2@))'

sgln 16m gl 8egl t -rtr' I'(r+2g, ) r(1 +2g,)
"

Bg,n I6g,e' Bn 4n
P+2g 2 P P+ P P P+2g P gl

The diffusion constant, defined as D =t '(R'),
may thus be obtained from (15).

It is easily checked that for o. »g„g, one ob-
tains D = 2n t reflecting free motion for t & g, ',
g, ', as expected. For the interesting case o.

«go, g„one also finds D =2o. 't for short times,
i.e. , for t«g, ',g, '. For long times, i.e. , t
»g, 'g, ' diffusive behavior sets in, with the dif-
fusion constant given by

Bg, 16g
r I r(1'+2g, ). '

where we recall that I'= 2g, +4g, . Setting gy OI po
equal to zero, respectively, one obtains the re-
sults for site diagonal or off-diagonal disorder
alone.

We now turn to a discussion of the relevance of
the model and the significance of the exact result,
Eq. (16), for the diffusion constant obtained by us.
As an example, consider the site diagonal and
off-diagonal disorder to arise from the random
thermal motion of the atoms in the solid. For
solids consisting of molecular species rather
than single atoms (such as organic quasi one-
dimensional conductors or molecular solids) one

may consider the site diagonal disorder to arise
from the intramolecular vibrational mode(s) and
the off-diagonal disorder to arise from the ran-

! dom (thermal) modulation of the nearest-neigh-
bor transfer integral of the carriers. The form-
er corresponds to random modulation of the car-
rier site energy. In either case, it is a simple
matter to show that at temperatures high com-
pared to the relevant characteristic phonon ener-
gy, the correlation function for the displacement
of the atoms goes like

(x „(t)x „(f'))=(7r T/12MQ )5(t —t'), (17)

where x „(f) is the separation of the mth and nth
atoms and we have, for explicitness, considered
a Debye spectrum for phonons characterized by
the Debye frequency QD. M is the appropriate
reduced mass of the ion. The 5-function behav-
ior in time is a consequence of limiting ourselves
to the regime T»Qo. Comparison of (17) and
the defining equation (2) of our random variables
shows that g(m —n) = y~(m —n)(wmT/12MQD') where
y(m —n) is the coupling strength of the carriers
with the phonons. In particular, y(0) = (Ooo/Ox) I „0
and y(1) = (O a/Ox) I „O. Utilizing the linear tem-
perature dependence of g, and g, we thus obtain
from Eq. (16)

D= Cy, T+ u V(CT) '(4 —8y, 'V+8y, 'VW), (18)

where C = pm/12MQDs, V= 1/(2yo~+4y~~), W= 1/
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(yo +3y, ). Expression (18) is a remarkable new
and exact result for thermally induced disorder.
It shows that the contribution of the nearest-
neighbor off-diagonal disorder gives rise to a
leading-order term in the diffusion constant
which is linearly proportional to the temperature
in the high-temperature regime. An example of
the significance of this result may be seen for
nondegenerate carrier distribution, for which
the mobility is readily obtained from the Einstein
relation'.

p= eD/0 s T = C~+ Cs/T,

where g, and g, are constants. Thus for systems
dominated by nearest-neighbor off-diagonal dis-
order and narrow band width (i.e., C, »Cs), we
find that the carrier mobility will exhibit a very
weak temperature dependence. We believe this
to be an explanation of the observed weak tem-
perature dependence of mobility in As, S, which
has hitherto remained unexplained. "

Finally, for organic molecular crystals, such
as 1-4-dibromonaphthalene, it has been estab-
lished' ' that the motion of the Frenkel exciton,
which is crucial to the explanation of such proper-
ties as energy transfer without charge transfer,
ESR, NMR, etc. , shows a continuous change of
the character of motion from purely coherent to
purely diffusional with increasing temperature.
For light adsorbates in weak surface potentials,
such as helium on graphite or noble-gas solid
surfaces, essentially coherent (i.e., free) motion
has been found io The behavior of both these sys-
tems has been discussed' ' for many years in
terms of approximate solutions of the model Ham-

iltonian, Eq. (1). Our exact solution thus pro-
vides a rigorous basis for the understanding of
these systems as well. Details of these compari-
sons will be published elsewhere.
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