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It is shown that because of a polarization effect the sticking coefficient of atoms on sur-
faces remains finite down to much lower temperatures than has hitherto been supposed
on the basis of the Born approximation to the sticking process.

This Letter addresses a long-standing puzzle
in the interpretation of data on the sticking coef-
ficient, or sticking probability, of atoms on solid
surfaces at low temperatures (T). Computer cal-
culations based on classical lattice dynamics'
predict, and experimental results indicate, coef-
ficients approaching unity as T-0. However, a
quantum mechanical calculation, based on the dis-
torted-wave Born approximation (DWBA) to the
capture process, ' gives a coefficient which tends
to zero as T-0. A similar situation occurs in
the case of the of the thermal accommodation co-
efficient (o) as pointed out by Goodman, whose
classical theory'4 is in accord with the experi-
mental fact that n-1 as T-O, while the quantum
theory based on DWBA' predicts o.-0 as T-O.
The smallness of these coefficients in quantum
theory may be traced to the prevalent use of rig-
id adsorption wells for the adatom-surface inter-
action. The adatom wave function goes to zero
on the barrier side of the adsorption well and, at
long wavelengths, cannot build up appreciable
amplitude in or near the well. The matrix ele-
ments entering the DWBA are confined to this re-

!
gion and are thus very small for low incident en-

ergies. The point of this Letter is that the usual
distorted wave does not sufficiently account for
the nonstatie nature of the actual well. It is nec-
essary to take into account nonperturbatively the
polarization response of the surface to the ad-
atom. We have accounted for a large part of this
response by constructing polaron-type variational
states, using the Tomonaga approximation of un-
correlated virtual phonons. ' Within such a set of
basis states, the adatom becomes a quasiparticle
of greatly enhanced effective mass (m*) presum-
ably due to the large inertia of the accompanying
lattice distortion. The reason for the failure of
the DWBA and for the success of a classical or
semiclassical calculation is thus clear. As
shown below, m* is position dependent, being
large and sensibly constant over the well and de-
creasing rapidly to the bare mass (m) outside.
The wave function in the well still begins at zero
on the barrier side but rises with a slope m ~/m

times greater. ~ An increase in the density of low-
energy resonance levels by (m*/m)"s also in-
creases penetration.

Our approach begins with the commonly used
quasi-one-dimensional' Hamiltonian for the ad-
atom-surface system:

H= + V(z)+phrs, a,ta, +Qy, (a, +a, ")V'(z),
a

where V is the interaction potential between the adatom and a surface atom; a, and a,~ are the annihi-
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lation and creation operators for a phonon of frequency &u„' y, = (5/2MXu, )'", llI is the mass of a host
atom, m is the mass of the adatom, N is the number of atoms in the solid, and V (z) = dV/dz. No quali-
tative modification of these results comes from retaining in II the V" terms discussed by Caroli, Rou-
let, and Saint-James. '

As suitable basis states of (1) consider the states

( g) = y(z)e" ~') vac),

where

iS=5~,[s,(z)a, —s,*(z)a,t]

and Ivac) is the phonon vacuum. These states make (g IHI() stationary if s, and cp satisfy

5 5' *' ' 5'
z "+ +$ s' — Scu+ — —~ 8+ Q' s =y V',

2m ' 2m y* ' ' 4n, y* cp 4m J

and

+ V' y= july

where

8 = Q,{s,*'s, —s,*s,'),

52 52
V= V+5~ y, V'(s +s,*)+h~,~s, p+ ~s '['—

Using the basis set 14) for H amounts to using the basis set y(z) Ivac) for H= e ' He'~. H contains two
kinds of terms linear in g, and g, ~. terms proportional to U" which are discarded, and terms propor-
tional to momentum p. These latter terms may be eliminated by a canonical transformation:

7'= 5~,[(v„p),aq+ (o.+,p),a,']
with (A, B);AB+BA, -

cr, = s, '/[2m(u, (1+ I')],

where

I = (2k/m)5~,
~ s, '~'/~, .

Then the transformed Hamiltonian takes the form

H=e ' He' = p ——— p+'U,ik 8 I
2m+ 2 &z m+

where

m *= m (1 + I'), U = V + V~ + V2,

with V, a term linear in a, and a, but essentially proportional to V", and V2 consisting of multiphonon
terms. This effective potential will be discussed in a forthcoming paper, including a damping effect
due to U, . It is easily verified that in the usual polaron case of a homogeneous medium, "the above
yields the results of Lee, Low, and Pines' exactly. For motion parallel to the surface, there is also
a mass enhancement but it is much smaller due to the translational symmetry.

To evaluate the quasiparticle mass &pe* in an actual surface situation an important point must be not-
ed. For a static potential high enough to give total reflection, the most obvious choice for the particle
wave function y would have nodes. But, in the presence of coupling to phonons, the probability for a
particle to be at z with either 0, &, ~, etc. , phonons in the field can never be zero. This feature is
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possessed by polaron-type solutions which are superpositions of incident and reflected basis states,
y e" ivac)+Rcp, e'~+ivac), rather than (q +Rp, )e'~lvac). For example, in the standard case of the
static Morse potential, the positive-energy solutions are Whittaker functions which can be written as
sums of confluent hypergeometric functions M, (z) having e""' asymptotic forms (z-~). Our corre-
sponding polaron-type solution would be M e'~ Ivac)+RM, e' +lvac), where M, are self-consistent ver-
sions of M, . Because the phases of the two terms differ, this wave function possesses no nodes. This
is an essential feature of a "squashy" as distinct from a static potential.

We have considered two model potentials which may be solved analytically. One is a simple barrier:
V(z (0) = V„V(z )0) = 0, with V, »h~D, the maximum phonon energy. For low incident energy,

where zo=(h/2m&un)"~ and z, =(vo/2m&un )' . The
other model is a barrier plus well, as shown in
Fig. 1, along with its r(z) function for low inci-
dent energy. and t/"„V, »A~D. The enhancement
outside declines as in the first case, but over the
well it is constant and has the following range of
values depending on well width a. For e'"= 1,
where F= (2mv, )'i h,

and

V',h = V'(1 —3 V"/M&@ ),

7l
= 3~(V")'/2M~, ', m + = m(1+ r „„),

r,&,„=(v") (mvv) '5,~, 4.

r„.„=(3mv, '/Mh'~, ')(1+4V,/v, ),

and for ei~~ = i,

I'„,~ = 3mvo V, /Mh (u D,'

other widths give results intermediate to these.
A classical version of this effect can be ob-

tained from the equations of motion of a, and z
based on (1). Solving the coupled equations in the
manner of, for example, Kartheuser" gives a
generalized Langevin equation:

mz = —V'(z)+ V"(z)J V'(z(f ~))x(~)d~,

where

y(7) = (1/1Vi N)Q, since, ~/(u, .

For small z and 2, keeping only the lowest three
moments of z(w) gives

2

FIG. 1. The model potential {solid line) used in calcu-
lating the mass enhancement function I'(z) (dashed line).

g is the classical friction that in a quantum cal-
culation must be obtained from the V, part of V
in (4). Observe that r,»„essentially the sec-
ond moment of ~(T), is divergent (for acoustic
phonons) and thus invalidates a description local
in time. I'„,„ is also the value that one would
calculate above if one were to neglect terms of
order 8' in (2). These terms are of quantum ori-
gin and tend to permit a description local in time
[as would a classical theory with phonons of fi-
nite lifetime, for which all moments of ~(T) are
finite j.

We believe that the heavy mass for the quasi-
particle as calculated above for the positive-en-
ergy states does not preclude its behaving, with
its ordinary mass in collective modes like pho-
nons, where the particle is bound in periodic mo-
tion. States of the form ye" ivac) cannot be ex-
pected to approximate the bound states. An exact
calculation for a quadratic interaction potential
yields a mode (discrete if m is small, resonant
if m is large) with an increased frequency (corre-
sponding to a diminished mass). A similarly
exact calculation for the inverted quadratic poten-
tial yields an instability with a decreased growth
constant (increased effective mass). The expres-
sion for the mass increase in the latter case is
approximately the same as that obtained from the
variational procedure.

We conclude by noting that granted a quasiclas-
sical motion of the adatom, the low-T experi-
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mental results can be fitted excellently by solving degree.

with V(s(0) = 2K(a+a)' —2Ka', V(z)0) =0, and
noting the lowest velocity of incidence which per-
mits escape after one passage. The resulting
sticking coefficient takes the universal form

s = erf(T, /T)'"

where

T, = »a'n&'"&~ m"'

and kB is Boltzmann's constant, and erf is the er-
ror function. The model gives results that simu-
late closely the computer results utilized by
Goodman in proposing a formula for a(T)."
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The thermal conductivtiy k of a-Qe films has been measured between 0.4 and 10 K. The
temperature dependence of k shows that heat conduction by phonons is limited by some in-
trinsic scattering mechanism in addition to boundary scattering. Evidence is presented
that these scatterers are localized low-energy excitations which are common in glasses.

The thermal properties of amorphous dielec-
trics show a distinct temperature dependence be-
low 1 K. As discovered by Zeller and Pohl, ' the
specific heat varies as (:—T and the t)dermal con-
ductivity k is roughly proportional to T', where-
as in crystalline dielectrics both quantities vary
as T'. From these anomalies in the thermal
~nd similar ones in the acoustic' —properties,
one infers the existence of localized low-energy
excitations (LEE) from which phonons are scat-
tered. However, the microscopic nature of these
excitations is far from being understood. Among
the phenomenological models proposed, the "tun-
neling model" has proved to be the most suc-
cessful. This model implies tunneling of atoms

(or groups of atoms) between nearly degenerate
equilibrium positions. For this model, an "open
structure" (e.g. , a wide range of bond angles)
seems to be required, as found in glasses, poly-
mers, or amorphous Se.

In contrast, amorphous germanium (a-Ge) was
not expected to show such low-temperature anom-
alies since its structure is rather closed. Ex-
perimental support for this assumption comes
from specific heat measurements on a-Ge above
2 K, which yielded an enhanced T'term as com-
pared to crystalline Qe, but did not give evidence
for a linear term. ' Thus, the question whether
LEE do or do not exist in a-Ge appears to be of
great importance with respect to the physical na-
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