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The superposition of two scattering shells produces beats in the envelope function of the
extended x-ray—absorption fine-structure spectrum and a modulation in the scattering
phases. From the k values of the extrema in the envelope function and from the inflection
points of the phases the separation of these shells can be calculated without knowledge of
the scattering phases of the single shells. A resolution in R space up to 0.02 A can be ob-
tained even in cases where methods used so far are not able to resolve the scattering

shells.

Absorption spectra of polyatomic systems show
a modulation of the absorption coefficient above
the ionization energies of inner shells. It has
been attributed to an interference of the ejected
photoelectrons at the site of the absorbing atom.
For K-shell excitation the modulating part of the
absorption coefficient called the extended x-ray-
absorption fine structure (EXAFS) is described
by

X(k) = —k~1Y, A (k) sin[2kR; + ¢ (k)] (1)
with
Ak)=(N/RP|f{m, k)| exp(-20k% - 2R;/),

where N, is the number of atoms in the 7th shell
at a distance R, to the absorbing atom, [f(m, k)|
is the amplitude for scattering through angle 6=.
0,2 describes the mean-square displacement of
the atoms from their average positions. The
mean free path A of the electrons takes into ac-
count the observed decreasing contribution of
more distant shells. The phase shift ¢(k) is due
to the influence of the potentials of the absorbing
atom and the scattering atoms on the electron
wave,

Several attempts have been made to extract
structural information from EXAFS. The most
general methods used are fitting procedures™?
and Fourier transform methods.3™® A fitting
procedure is limited to simple fine structures
built up from one or two scattering shells be-
cause of the rapidly increasing number of param-
eters for more shells. The Fourier transform
method can be applied to more complicated struc-

tures. From x(k) a radial structure function

| F(#)| can be derived. The maxima of this func-
tion are generated by shells of scattering atoms
surrounding the absorbing atom, The positions
of the peaks in | F(#) | are shifted compared to
the true distances due to contributions of the
scattering phases that depend on %,

Several problems for the determination of atom-
ic distances arise from this Fourier transform
method: (i) The scattering phases in general are
unknown., Major efforts have been made to cal-
culate the phases” or to extract them from ex-
perimental data.®® The transferability of phase
shifts has been emphasized especially.® (ii) The
reference energy necessary for the conversion
of the energy scale to the %2 scale is unknown,
Usually the inflection point of the K edge is used
to fix the & scale, This arbitrary choice leads to
distortions, especially in the low-k-value region.
(iii) Because the range in k space where EXAFS
can be observed with sufficient amplitudes is
limited, the radial structure function yields -
broadened features. The widths of these features
determine the resolution in R space especially
for close-lying shells,

Here an extended Fourier transform method
will be presented for pairs of scattering shells,
It will be shown that the resolution in R space
can be improved compared to the Fourier trans-
form methods used up to now, Further, in con-
trast to usual Fourier transformations, a knowl-
edge of the phase is not necessary to determine
in bond lengths.

We consider an EXAFS spectrum for two con-
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tributing shells of identical atoms which are posi-
tioned at distance R, and R, from the absorbing
atom. The scattering amplitudes lfi(n, k)| and

the phases (pi(k) are the same for both shells.
Then the sum of Eq. (1) over the two shells can
be written as

x(k) = —k_lA.(k) Sln[zkk + é(k)], (2)
where
R=(R,+R,)/2

is the average distance of the two shells from the
absorbing atom. The envelope function A(k) for
the two-shell EXAFS takes the form

A(k) =A,(k)[1+C? +2C cos(2kAR) V2 (3)

with A,(k) the envelope function of the first shell
as defined by Eq. (1) and C the ratio of the enve-
lope functions of the second and the first shell:

c =A2/A1 = (Nz/Nl)(Rlz/Rzz)
xexp[-2(0,2 - 0,2)k2— AR/X].  (4)

The relative distance is given by AR=R,-R,.
The envelope function A,(k) is modulated by the
presence of a second scattering shell, It shows
beats with a wavelength in 2 space determined
only by the relative separation of the two shells,
Under the assumption of small differences in the
mean-square displacements 0,2 and a k-indepen-
dent mean free path A, the modulating term under
the square root of A(2) shows minima and max-
ima for

kp=nT/2AR, n=1,2,3,... . (5)

" At the same % values the averaged phases ¢(k)
show inflection points from which AR can be ob-
tained as well.

We have tested the EXAFS beat method on the
spectra of Cu and CuO [Fig. 2(a)]l. The spectra
have been taken with statistics better than 0.1%,
a resolution of 5 eV, and a step width of 2 eV
using a 12-kW rotating-anode x-ray generator as
light source and a LiF single crystal for non-
chromatization, Complete experimental details,
which are unimportant in the present discussion,
are given in Ref, 6. First we show a test on the
EXAFS spectrum of Cu, The radial structure
function | F(#)| [Fig. 1(a)] has been calculated by
the Fourier transform method as described by
Stern and co-workers.*5 The influence of the
limited range in 2 space has been minimized by
using a window function consisting of a convolu-
tion of a Gaussian and a square window. The
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FIG. 1. Test of the beat method with an experimental
EXAFS spectrum of Cu. (a) Fourier transform |F(r)|,
(b) modulating part of the envelope function [Eq. (3),
A(k)/A(R)] derived from the first and second shells,

(c) average phase @(k) derived from the first and sec-
ond shells, (d) same as (b) for the second and third
shells, (e) same as (c) for the second and third shells.

optimal resolution in R space, i.e., the separa-
tion AR for which two scattering shells are clear-
ly separated in | F(#)|, is 0.3-0.4 A when only
the available % space (=10 A™Y) is taken into ac-
count, This & range is typical for EXAFS spec-
tra and cannot be increased significantly (i.e.,
>20 A~Y) experimentally because the decrease

in the EXAFS amplitudes is due to the energy de-
pendence of the envelope function A4 (k) [Eq. (1)].
The features in the structure function are broad-
ened additionally by the window function. Window
functions which yield sharper features cause
more pronounced side lobes which also disturb
the structure function. The contributions of four
different scattering shells can clearly be seen
[Fig. 1(a)] and the resolution is equal to the best
obtained elsewhere.? From this radial structure
function, the contributions of the first and sec-
ond and of the second and third shells, respec-
tively, have been transformed back to 2 space
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TABLE I. Comparison of differences in bond lengths
of Cu and CuO determined with the EXAFS beat method
(ARye,) and with x-ray diffraction (ARg¢¢).

ARpeat ARg;gf
Compound Shell (A) (A)
Cu 1+2 1.05 1.06
Cu 2+3 0.87 0.82
CuO 2+3 0.17 0.19

simultaneously and the envelope functions ﬁ(k)
and the phases @(k) have been calculated, To re-
duce the influence of the slope of the envelope of
a single shell on the determination of AR, A(k)
has been divided by the envelope function of a
single shell of Cu. The results for A(k)/A(k)

and @(k) are shown in Figs. 1(b)-1(e). From the
k values of the minima and maxima of A(k)/A(k)
and the inflection points of @(k) the relative sepa-
ration AR has been calculated using Eq. (5). The
values of AR determined by the beat method are
compared with values determined by x-ray dif-
fraction® in Table I. For the first two shells we
find excellent agreement. The larger difference
of 0.05 A results from the fact that the third and
the fourth shells overlap strongly in the radial
structure function. Therefore the region in R
space to be transformed back is difficult to deter-
mine the large error shows in influence of the
contribution of the fourth shell,

In a second test we will demonstrate the appli-
cation of the EXAFS beat method for the deter-
mination of distances of close-lying shells. For
this test we use an experimental EXAFS spec-
trum® of CuO [Fig. 2(a)]. In this compound, the
central Cu atom is surrounded by a planar ar-
rangement of four oxygen atoms with a distance
of 1.95 A from the absorbing atom. The next
two shells are built up from four Cu atoms each
with distances 2.88 and 3.07 A. The Fourier
transform of the EXAFS is shown in Fig. 2(b).

A shoulder in the second peak of the structure
function points to the contribution of the two Cu
shells but a determination of the relative separa-
tion is impossible, To determine AR a limited
range in R space as indicated by bars in Fig. 2(b)
has been transformed back to 2 space. The re-
sulting envelope [Fig. 2(c)] shows a pronounced
minimum at 9.1 A~!, At the same point ®(k)
[Fig. 2(d)] shows the expected inflection point,
With this k& value, a distance between the two
shells of 0.17 A is obtained. This distance is in
good agreement with that obtained from x-ray
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FIG. 2. (a) Absorption spectra of Cu and CuO,
(b)—(d) application of the beat method to an experimen-
tal EXAFS spectrum of CuO. (b) Fourier transform
|F(#)|, (c) envelope function A(k) derived from the sec-
ond and third shells, (d) averaged phase @ (k) derived
from the second and third shells (dashed line, phase
of a single Cu shell).

diffraction data!® (Table I).

Finally we would like to point out two further
applications of the method described above:

(1) In the envelope function of EXAFS, the mag-
nitude of the scattering amplitude is always com-
bined with the £-dependent Debye-Waller factor,
The 2 dependence of the scattering amplitude is
characteristic for the scattering atoms., Thus
with the aid of the Debye-Waller factor it should
be possible to identify the contributing atomic
species. It is sufficient to know only the differ-
ences of the mean-square displacements of the
atoms. On the other hand, the variation of the
amplitudes A(k)/A(k) allows one to study these
differences,

(2) In the past, the correct choice of the refer-
ence energy either has been regarded as of mi-
nor importance®* or it has been used as fitting
parameter.® Because of its great influence on a
reliable determination of bond lengths especially
in the low—k-value region, an independent method
to evaluate this parameter is of great importance
for the practical application of EXAFS, From
the extreme values of the EXAFS beats deter-
mined experimentally together with Eq. (5) the
reference energy can be calculated. For shells
with a larger relative distance a great number
of beats show up in the observed % region. From
these beats the k& dependence of the reference
energy can be studied.!!
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Space renormalization group calculations are performed for a class of spin-S Ising
systems, using a modification of Migdal’s recursion relation. Interface-roughening mod-
els are obtained when S— « and tricritical points and critical lines become the roughen-
ing temperature and rough phase. The latter corresponds to the low-temperature phases
of the classical Coulomb gas and two-dimensional XY model and implications for the XY-

model exponent 7 are discussed.

We have used a generalization of Migdal’s ap-
proximation to study a particular class of Ising
models with Hamiltonian

H=Jd) |s; -S,;|* +m238 32, (1)
(i,4) [
where the exchange interaction acts between near-
est neighbors and the spins S; have values - S,
-S+1,..., S=1, S. Although H is far from the
most general Hamiltonian which could be written
down for arbitrary S, it encompasses a remark-
able variety of systems of considerable theoreti-
cal and practical interest. When S=1 and p =2,
H is a well-studied model®® of critical-tricritical
phenomena, whereas for S—«and m,=0 it de-
scribes interface roughening* in the theory of
crystal growth. For the latter application, S; is
the height of the crystal surface above some ar-
bitrary level, and to describe a three-dimension-
al solid, the model lattice hasd =2. The solid-on-
solid model* p =1 is of most direct physical in-
terest and the basic problem is to demonstrate
the existence of a roughening transition at which
there is a change in growth rate and crystal per-
fection. However, other values of p also are of
importance. Ford =2, H is related by a duality
transformation®”” to various forms of the classi-
cal XY model and, in particular, the limitp =
(which produces a restriction 1S; - S,/=0,1) cor-
responds to the approximation used by Luther
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and Scalapino® for this problem. The discrete
Gaussian model, p =2, is equivalent to the Cou-
lomb gas*® and also plays a special role as a
fixed-point Hamiltonian in renormalization-group
calculations.

Kadanoff'® has discussed the virtues of Migdal’s
recursion relation and has given a rather simple
derivation by bond moving. For application to the
present problem, it is necessary to divide the
Hamiltonian into bonds %(S;,S;) which are to be
moved and site-diagonal terms G(S;) which give
weights in the one-dimensional decimations. Our
prescription is to arrange that ®(S,S’) = %x(S’,S)
and %(S,S) =0 for all S,S’ after each renormaliza-
tion.'’ Results will be quoted for scale factor A
=2,

Figure 1 shows the d =2 phase diagrams in the
(m,,T) plane for S=1, 2, and 3, all of which have
a critical line and coexistence curve meeting at
a tricritical point. For S=1, this is well known®?
and the tricritical values m =—0.135 and T,/

T Gn,=-2)=0.475 are in good agreement with
Monte Carlo® results. When S increases, the crit-
ical line becomes more vertical as a result of

two effects. For m, large and negative, the

states +S dominate and T, is that of a spin-3
Ising model with exchange integral 4S%J. At the
same time the tricritical point moves very rapid-
ly towards m,=0 with T'; increasing slowly. This
indicates that as S —« the critical line and coex-



