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The production of gravitons in a homogeneous, isotropic, spatially flat universe con-
taining radiation and a small admixture of cold baryons is studied by an effective-poten-
tial method which takes into account the back reaction of the produced gravitons on the
geometry. The total probability per unit volume to produce a pair of gravitons is finite
and has a very small value for a universe with parameters corresponding to my own.

In the early universe the process of pair crea-
tion may play a significant dynamical role. '
Field-theoretic calculations of this process en-
counter not only the usual ultraviolet divergences
of flat-space field theory but also divergences
arising from the cosmological space-time singu-
larity. Typical attempts to resolve these latter
difficulties and obtain a finite number of produced
particles have involved either limiting the calcu-
lation to a space-time region which does not in-
clude the singularity or altering the geometry to
remove the singularity in an ad hoc way.

In this Letter I shall outline an effective-poten-
tial approach to the calculation of pair creation
in the early universe in the context of a particu-
lar model problem. The problem is the produc-
tion of gravitons in a homogeneous, isotropic,
spatially flat universe containing classical radia-
tion and a small admixture of cold classical bary-
ons. This effective-potential method takes into
account the back reaction of the produced gravi-
tons on the metric. If it is assumed that no gravi-
tons are produced for a universe containing radia-
tion alone, we shall find that for a universe with
a small admixture of cold baryons this back re-
action is just such as to regulate the behavior of
the classical geometry at the singularity so as to
make the total graviton pair production probabili-
ty per unit volume finite.

I shall calculate the amplitude (0,(0 ) that the
no-graviton vacuum at early times remains the
no-graviton vacuum at late times. My fundamen-
tal starting point is the expression for this ampli-
tude in the presence of classical sources whose
stress-energy tensor density is g &. In terms of
a Feynman sum over fields'

(O, j0 ), = 16gexp{i(S[g]-Jd'xg)]

-=exp(iW[g]) . (1)

where S= S[ g] f+'dxA, S,[g] =- l 'fd' (-xg)' 'll
+ (surface terms) being the gravitational action,
A the Lagrangian of the matter, g =g „a, and l
=(16nG)'~'= 1.2 &&10 "cm is the Planck length.
Throughout I use units with A = c = 1 and signature
+ 2, and for compactness will frequently suppress
tensor indices. The sum in (1) is over all geome-
tries between the initial singularity and a late-
time spacelike surface. The classical geometry
g(x) is defined in terms of the metric field opera-
tor g(x) by g(x) =(O, ~g(x) ~0 ), /(O, IO ), and in
the presence of particle production will be a com-
plex quantity. The effective potential I'[g] is the
Legendre transform of W[J] with respect to the
source g, I"[g]=W[g]+ fd'xg Its impo. rtance
arises from the fact that the classical geometry
g satisfies the variational equation

5( I'[g]—Jd'xg] /5(x) = 0.
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52Sr [a]= S[a]+—' Tr ln, „( ) „(,) . (5)

This approximation is appropriate because in an
expansion of I'[a] in powers of I the single loops
are the next term after the classical one whose
difficulties I have discussed and also because the
single loops contain the simplets diagrams corre-
sponding to the creation and annihilation of a
graviton pair —the process under consideration.

In (5), the second term may be reexpressed as
—2iTr ln[G(x, x')], where G(x, x') is the Green's
function of the linear wave equation 5S /5h = 0 for

The vacuum persistence amplitude in the absence
of external sources is then given by

(0+ j0 ) =exp(iI [g]),
evaluated at the solution to (2) with $ =0. Equa-
tion (2) may be regarded as defining the possible
vacuum states and Eq. (3) gives their persistence
amplitudes.

I will now search for the solutions to (2) in
which the classical geometry is homogeneous,
isotropic, and spatially flat and which further
have an initial singularity and which at late times
approach a real solution of Einstein's equations.
The metric then has the form

ds' = a'(q)( dr) -+ dx'+ dy'+ dz') .
For the matter we shall take a mixture of radia-
tion for which the trace of the stress-energy ten-
sor satisfies T=0 and baryons for which T= —p, /
a', where p, is a positive constant.

Three approximations will be used in evaluating
I [a] for metrics of the form of (4). First, the
sum over fields in (1) will be restricted to the
pure gravitational wave modes. The matter con-
tent of the universe is being treated classically
and it is inappropriate to quantize the density and
vorticity perturbations associated with these de-
grees of freedom. This restriction is most easily
implemented by writing the integration variables
in (1) as g= a'q+ h, where rl is the Minkowski met-
ric and then integrating only over tensors h(x)
which are time orthogonal, transverse, and trace-
less. ' Second, the effective potential, I'[aj, will
be calculated in the one-loop approximation or
equivalently W[g] will be calculated by the method
of steepest descents Then, .' when g =0

gravitational waves propagating in the background
geometry of (4). Boundary conditions must be
fixed for this Green's function. In an important
paper4 which underlies the present work Grischuk
has shown one way to do this. The simplest case
is when the matter is pure radiation, p~=0. Then
Grischuk shows that exgct solutions to the wave
equation have the space-time dependence h(x)
~ [1/a(g)] exp(a icoq+k x) with co = jk j so that in
this sense positive- aad negative-frequency solu-
tions can be defined over the whole of space-time
and do not mix. Equivalently, when expressed in
terms of the variables p(x) =a(vy)h(x), the quadrat-
ic part of the expansion of the Lagrangian S in

p(x) has the form of the Lagrangian for free gravi-
tational waves in flat space-time. It is therefore
natural to demand that the vacuum be annihilated
by the positive-frequency parts of the field p(x)
or equivalently that the Green's function G(x, x')
be the flat-space Feynman Green's function times
a conformal factor. Since the theory in the pure-
radiation case is then essentially equivalent to
free-field theory in flat space-time, there will be
no graviton production, the second term in (5)
will be a constant, the extremum of I'(a) will sat-
isfy Einstein's equations, I"(a) will be real, and
the vacuum will persist, j(0+j0 ) j= l.

If baryons are now added to the matter (p~e0),
the same boundary conditions may be applied to
G(x, x') but r[a] will no longer be real. In gen-
eral, it would be impossible to obtain I"[a] as a
closed-form functional of a(g) but it can be com-
puted perturbatively in closed form if p~ is suf-
ficiently small. The constant dimensionless pa-
rameter governing such an expansion is $ = Ip, /
p„' ', where p„ is the energy density in radiation.
Since $-10 "for our universe, an expansion in

$ should give an excellent approximation to I'[a].
Indeed, for present baryon masses, $ is very
small even for universes for which the ratio of
baryons to radiation quanta is quite large. My
third approximation in computing I"[a] is to eval-
uate it to second order in $.

To evaluate I'[a] in the one-loop approximation
the action 8, is first expanded to quadratic order
in h. Using the field equations to eliminate terms
which are of nominally lower order but actually
higher order in h, working in the transverse,
traceless, time-orthogonal gauge, and using the
variables P =ah, one finds

S[g]= fd'x(6(a')'/I'+ lp '[ 'p, '-a(n)p, ']&. (6)

Here, a prime denotes a derivative with respect to q, A=a "/a=6a'A, and '= q"~B„B&is the flat-space
wave operator.
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The quantity A. vanishes when $ =0; so for small $, A will be small. The action in (6) has the form
of a flat-space action for the fields p,. plus a quadratically coupled perturbing potential A(g). The ef-
fective potential in the one-loop approximation can be evaluated as a series in A. using the usual flat-
space Feynman rules. The leading terms are infinite and must be regularized. To do this I use the
dimensional regularization procedure, continuing in the number of conformally related flat-space di-
mensions. In this procedure the loop which is first order in A vanishes. The second-order loop has a
logarithmic divergence which cannot be removed by a renormalization of G or the cosmological con-
stant. This nonrenormalizability is familiar from other examples. To proceed, I subtract out this
divergence by adding to the action a counter term whose divergent part is

$ [g]—(72 g) & fd4~( g)~12jP

where e= 8w (n - 4), n being the number of space-time dimensions. The resulting effective potential
will be proportional to the total spatial-coordinate volume because of spatial translation invariance.
Denoting this by V we find

V 'I'[a]=6f dg(a')'/l'+ (64m') 'f dq J dq'A(q)K(rj- g')A(g'},

(7)

(8)

where the singularity g=O has been located at g=O. The kernel K is given by

K(g) = i6(rl)+ (2/m) f d~ cos(rug) in(a&/cu, ) . (9}

The parameter ~, is arbitrary and arises because the real finite part of the counter term of the form
(7) is unspecified. This arbitrariness is yet another reflection of the nonrenormalizability of the theo-
ry.

The variational equation (2) which determines the classical geometry from this I'[a] is a fourth-or-
der, nonlocal, one-dimensional integrodifferential equation for a(g}. This equation has an integral
which is

p„=6(a')'/l' —ap~+ (64m') ' [- 2a'(I/a)'+ (a~/a)l],

where p„ is constant and

1{n)= f, dry'K(rl n') 4 (-n')/~(n')]

This equation is to be solved with the boundary
conditions that a = 0 at q= 0 (the singularity) and
that at large g it approach the real solution of
Einstein' s equations

(12)

I have analyzed the solutions of this problem.
Especially instructive is the local approximation
in which only the 5-function part of K{q) is re-
tained. Equation (10) can then be reduced to a.

second-order nonlinear differential equation' for
(a')'~' as a function of a. For sufficiently small
rl, this equation can be linearized in $, solved in
terms of Bessel functions, and matched onto (12}
at larger g. The details of this are too complex
to be given here but the important result is that
near the singularity instead of the behavior of (12)
the effective potential leads to a small-g behavior
for a(g) of the form

a(g) = (P„/6) '~'l q+ const x q4 ~ ~ .
If the nonlocal term in X is included the behavior

r of the next. term after the linear one is modified
to const x q'/in'. This small-g behavior means
that the effective potential per unit spatial volume
[Eq. (8}]evaluated at the classical geometry will
have a finite imaginary part in contrast to the in-
finite va1ue obtained when the solution to the clas-
sical Einstein equations alone [Eq. (12)] is used.
Within the context of approximations used here,
the back reaction on the metric has thus regulat-
ed the production of the gravitons near the sin-
gularity.

Putting the equations in dimensionless form,
the magnitude of the vacuum persistence ampli-
tude can be estimated. Stating this in terms of
the physically more interesting total probability
I', to produce a pair of gravitons in the spatial
volume occupied by one baryon, I find I', = n(&u, )
&nz~l, where n is a dimensionless constant of
moderate value and m~ is the proton mass. As-
suming closure density for the matter, P,
-10 n for the parameters of our universe so
that the graviton production probability in this
model is enormously small.

The effective-potential method for calculating
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particle production in cosmological models has
several advantages. It takes the back reaction of
the produced particles into account. Regulariza-
tion can be accomplished in the action itself rath-
er than in quantities of a more complicated ten-
sorial character such as the stress-energy ten-
sor. Finally, it lends itself naturally, as here,
to approximation schemes which can be clearly
related to the basic quantum-mechanical law for
a.mplitudes, Eq. (l). It would be of great interest
to apply this method to more general and more
physically realistic cosmological models includ-
ing anisotropies.
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Vibrational-dephasing times have been measured in mixtures of liquid N2 and Ar. The
correlation time of the molecular motion initiating the dephasing process is calculate
be 2.2 and 4.6 ps in pure N& and pure Ar, respectively. These rather long correlation
times suggest that the dephasing results from the average force field determined by the
number of nearest-neighbor molecules.

Recently it has been shown that after a coherent
excitation of molecular vibrations by stimulated
Raman scattering (SRS), the dephasing of the vi-
brations can be probed directly by measuring the
intensity of the coherent anti-Stokes Raman scat-
tering as a function pf the delay between excita-
tion and probe pulse. " By this method the vibra-
tional-dephasing time has been obtained for a
number of pure liquids. ' 4

The dephasing of the coherent excited ensemble
is the result of a modulation of the vibrational
transition frequencies by stochastic perturbations
which arise from the intermolecular interactions
of the excited molecules with their individual sur-
roundings. The modulation itself is determined
by the dynamics of the molecular motions in the
liquid.

Several descriptions have been developed to
relate the dephasing time to a vibrational corre-
lation function. "'~ Recently, Rothschild' gave an
analysis in terms of molecular-dynamics (M.D.)
calculations for liquid nitrogen, a Lennard-Jones
liquid for which the thermodynamical properties
are reasonably understood by M.D. calculations.
Using the results of M.D. calculations for calcu-
lating the mean-square frequency displacement,
a correlation time ~, can be calculated in case of
a fast modulation of the oscillator frequencies.
By comparison with the M.D. calculations it may
then be determined which type of molecular mo-
tion is responsible for the vibrational dephasing.

In order to investigate the influence of the mo-
lecular environment upon the dephasing of nitro-
gen, the dephasing times were measured in liquid


