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A calculation of the electronic energy and optimum atomic spacing for an equally
spaced linear array of hydrogen atoms is combined with other information to yield an
improved analysis of the existence and stability of metallic hydrogen. A filamentary
structure postulated by others is predicted not to be stable or metastable at any pres-
sure; previous predictions of a transition under pressure to a metallic cubic (or hep)
phase are reaffirmed. The energies and interatom spacings in H,, linear chains, and
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cubic crystals are in good accord with chemical expectations.

The last few years have seen an increasing in-
terest in the structure and properties of metallic
hydrogen. Spurred by prediction of its high-tem-
perature superconductivity,!*? occurrence in Jo-
vian planets,® and potential importance in laser-
fusion and energy-storage applications, numer-
ous theoretical and experimental studies have
been directed at this intriguingly simple system.
The experimental situation is still somewhat am-
biguous, but metallic hydrogen may have been
observed by Grigor’ev et al.* and by Vereschscha-
gin, Yakovlev, and Timofeev.® The theoretical
studies date back to an initial investigation by
Wigner and Huntington®; a recent survey by Car-
on’” summarizes the situation up to 1974.

The observability and expected properties of
metallic hydrogen depend upon the crystal struc-
ture(s) in which it may form and upon the pres-
sure range(s) in which it may be stable or meta-
stable. The most comprehensive previous study
of the probable crystal structures of metallic hy-
drogen is to be found in the work of Brovman,
Kagan, and Kholas,®®° who predicted a filamentary
structure to be the most favored metastable form
at zero pressure, with less anisotropic struc-
tures favored at higher pressures, leading final-
ly to a stable becce phase at extreme compression.
Brovman, Kagan, and Kholas?®'® based their pre-
dictions on perturbation calculations carried
through third order with the use of a Hubbard-
type Hamiltonian.

Prediction of the conditions for absolute stabili-
ty of a metallic phase has proved elusive, in large
part due to difficulties in making sufficiently re-
liable calculations for the molecular solid. Typi-
cal results indicate the metallic phase to be sta-
ble only at pressures in or above the megabar
range.’® We have been among those studying the
transition between molecular and metallic phas-
es'!; we find the transition to be first order, with
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an atomic volume change from about 17 bohr?
(for the molecular phase) to about 11 bohr?® (for
the atomic crystal). Both phases possess atomic
volumes smaller than that of the hypothetical cu-
bic structure at zero pressure (18-19 bohr?).

We report now a calculation for a linear array
of hydrogen atoms, discussing how it, plus our
earlier studies of cubic hydrogen systems, % 13
can lead to a partial confirmation of the work of
Brovman, Kagan, and Kholas®® and to more re-
liable predictions relative tp metallic hydrogen.
Our calculations, to be reported elsewhere in de-
tail," give total energies, equilibrium interatom-
ic spacing, and electronic wave functions for an
infinitely long line of equally spaced hydrogen
atoms. We assume doubly occupied “crystal” or-
bitals of “modulated-plane-wave”-type,'® built
from one 1s Slater-type orbital per atom, and
use the usual nonrelativistic Hamiltonian (kinetic
plus electrostatic energy), evaluating exactly all
Coulomb and exchange matrix elements. The
screening parameter of the Slater-type orbital
was determined variationally. Except for the
modifications inherent in the application to a sys-
tem with one-dimensional periodicity,'® the meth-
od is identical to that used in our cubic-crystal
studies.

The most important result of the calculation is
its prediction of an optimum interatom spacing
of 1.78 bohr with an associated total energy of
—0.527 hartree /atom. The wave function yield-
ing this result had Slater screening parameter
1.217 (close to a typical value for hydrogen in
molecules) and produced a ratio of potential en-
ergy to kinetic energy in good accord with the
virial theorem (-2.003). The calculated energy
and interatom spacing are in reasonable agree-
ment with those previously obtained by Liskow
et al.’® and by Kertesz, Koller, and Azman'”,

The new feature of our results is their direct
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comparability with extant cubic-crystal calcula-
tions.

In earlier calculations,'?!® we used the same
orbital form and Hamiltonian on bece and fee struc-
tures. For the bce crystal, we found the optimum
nearest-neighbor distance to be 2.85 bohr, with
an energy of —0.467 hartree/atom. For the fcc
crystal, the corresponding quantities were 2.99
bohr and - 0.468 hartree/atom. No studies were
made of the hep structure; we would expect a be-
havior quite similar to that of the fcc crystal.

It is clear that the linear chain is both more
closely spaced and more stable than either cubic
structure. This fact suggests the construction of
a three-dimensional crystal as a space-filling
bundle of linear chains; in fact, Brovman, Kagan,
and Kholas®? find this to be the most stable struc-
ture at zero pressure, and to be metastable.

In order to investigate more completely such
bundles of chains, we estimated the interaction
energy of a pair of adjacent chains by summing
the pairwise contributions of the individual hydro-
gen atoms, using the calculations of Kolos and
Wolniewicz® on the interaction of nonbonded hy-
drogen atoms. This approach ignores three-body
effects and any possible partial bond formation,
but is probably adequate so long as the interchain
spacing is large compared to normal bond lengths.
Interaction energies obtained in this way, listed
in Table I, were used as a basis for the further
analysis to be presented here.

Using the information in Table I, we conclude
that the most stable chain bundle will be hexago-
nal in cross section, each chain having six near-
est neighbors. The equilibrium configuration is
characterized by an interchain separation of
about 7.4 bohr and a total interchain energy con-
tribution of —0.000 44 hartree/atom. This ap-
pears to be the lowest-energy potentially possible

TABLE I. Calculated interaction energy E (hartree/
atom) for two chains of hydrogen atoms at interchain
spacing 6 (bohr). The intrachain spacing is 1.78 bohr;
to the precision given E is independent of the relative
longitudinal positioning of the two chains.

6 E [ E
34 0.0361 6.9 -0.000117
3.5 0.0314 7.0 —-0.000127
3.6 0.0274 7.3 -0.000143
3.8 0.0206 7.4 —0.000144
4.4 0.0083 7.5 —0.000143
5.0 0.0031 7.6 —0.000 142

zero-pressure configuration of an atomic-hydro-
gen solid. The chain bundle has an atomic vol-
ume of 84 bohr?, far smaller than that of solid
molecular hydrogen (120 bohr?®). To 1077 hartree/
atom, this result is independent of the relative
positioning of the atoms of adjacent chains, there-
by confirming the assertion of Brovman, Kagan,
and Kholas®'® that the chains should be able to

slip freely relative to each other.

However, we disagree with Brovman, Kagan,
and Kholas®? as to the metastability of the fila-
mentary structure at zero pressure. The calcula-
tions of Kertesz, Koller, and Azman'? on chains
of unequally spaced hydrogen atoms show that the
equally spaced chain will be unstable relative to
the expansion of alternate spacings, permitting
the chain to explode along its linear dimension
into separated hydrogen molecules. The slight
attraction between chains is insufficient to coun-
teract this destabilizing effect.

We next consider the optimum configuration of
the atomic crystal when under compression. Con-
tinuing our analysis of the filamentary structure,
we note that the minimum pressure at which there
is any chance of metastability will be that which
just suffices to prevent the “explosion” referred
to in the preceding paragraph. Using values
(from Ref. 17) of the change in linear-chain en-
ergy with respect to expansion toward H, mole-
cules, we can estimate the longitudinal force
which must be applied to each chain. Then, using
Table I, we can allow for the effect of pressure
on the interchain separation and invoke the re-
quirement of hydrodynamic stability. Such a cal-
culation indicates a minimum pressure of 0.71
Mbar, with the interchain spacing reduced to
about 4.55 bohr (equivalent to an atomic volume
of 32 bohr?), and with total interchain repulsion
energy of about + 0.020 hartree/atom. At this
density the interaction between adjacent chains
is still independent of their relative longitudinal
positioning to 107 hartree/atom.

In addition to possessing hydrodynamic stabili-
ty, we calculate the compressed structure dis-
cussed in the preceding paragraph to be stable
with respect to the rearrangement of each linear
chain into H, molecules. We are nevertheless
pessimistic as to metastability because of the
multifold possibilities for few-atom rearrange-
ments into a favored structure of the molecular
crystal. Nowhere in the relevant atomic-volume
range of the filamentary structure (32-22 bohr?)
is it even close in energy to the molecular crys-
tal. '
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Referring once again to Table I, we may esti-
mate the change in energy of the filamentary
structure as it is compressed into volumes small-
er than that at which it initially becomes hydro-
dynamically stable. When the interchain separa-
tion has been reduced to about 3.80 bohr (atomic
volume 22.3 bohr?), the total energy has risen to
become equal to that of the fcc structure (- 0.465
hartree/atom). Below this atomic volume, the
cubic structures are energetically favored over
the filamentary structure. Since the transition
from molecular to atomic crystal has been calcu-
lated to take place at smaller volumes than are
in question here, the analysis in terms of a cubic
atomic crystal would appear to remain appropri-
ate.

- There remains one possibility discussed by
Brovman, Kagan, and Kholas,®® namely the for-
mation of planar sheets of hydrogen atoms which
could stack to form arrays of lower than cubic
symmetry. A complete discussion of this possi-
bility would entail a good quantum-mechanical
calculation for a sheet of atoms, and we have not
as yet performed such a study. However, a sheet
structure would have no effect on the present anal-
ysis unless there were a volume range in which

it was more stable than both the cubic and molecu-
lar phases. On the basis of the information avail-
able now, this eventually does not appear very
likely.

Both the linear-chain calculations and the pres-
ent analysis are consistent with reasonable chemi-
cal expectations regarding an atomic-hydrogen
lattice. The nonexistence of valence-shell p or-
bitals effectively limits hydrogen to one strong
bond (as in H,, with a bond length of 1.4 bohr);
all additional neighbors have a net antibonding in-
teraction. The unusually large optimum near-
neighbor distances in the cubic crystals (2.85-
2.99 bohr) represent an optimum “partial bonding”
of each atom to several neighbors; that in the lin-
ear chain (1.78 bohr) represents a “half-bonding”
situation.

In summary, we conclude that a metastable
filamentary structure for metallic hydrogen is
unlikely to be realizable, and that the most rea-
sonable expectation is for the production of a sta-
ble cubic or hcp structure at high pressure.
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