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scattered light was observed at these densities
and the enhancement (Fig. 3) lasted for longer
than the CO, -laser pulse (Fig. 1). The threshold
for the heat-flux instability is a, /L = 0.6 for T,
=5T, which is close to our observed maximum,
h., /L -0.5. However the distribution functions'
on which this theory is based are unphysical
since they become negative on one side in the
region of velocity space where the net heat flux
occurs (1.5v, q&v &3v, h) when X, /L &0.02.

In conclusion we have observed a (2-5)% flux
limit to heat flow when T, -5T;, which can be
explained by the observed low-frequency turbu-
lence.
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The kinetic treatment of the ponderomotive force concept is found from nonresonant
quasilinear theory for waves with spatially dependent amplitude. In general, the pondero-
motive effect appears as a velocity-space diffusion term, not just as a force. For an un-
magnetized plasma, the qualilinear equations are solved directly, and the correct density
modification exhibited explicitly. Examples are considered for both a homogeneous and
an inhomogeneous magnetic field, and aspects of rf end plugging are discussed.

The effects of electromagnetic waves on a plas-
ma are relevant to problems in both laser fusion
and magnetic confinement. In the former case,
self-focusing density modifications, parametric
instabilities, and magnetic field generation are
of interest, and, in the latter, wave heating, end
plugging of open systems, and impurity control.
For many of these problems, the collisionless
regime is appropriate, and both single-particle
and fluid treatments have shown that the pondero-
motive force plays a key role in nonresonant non-
linear phenomena. In this Letter, the inadequacy
of using only a ponderomotive force in a kinetic
treatment is demonstrated, and the porper col-
lisionless kinetic theory of nonresonant wave ef-

fects in a weakly inhomogeneous plasma is pre-
sented.

When fluctuating wave amplitudes are small and
autocorrelation times are short compared with
diffusion times, the lowest-order wave modifica-
tions of the particle distribution are given by
quasilinear theory. In this approximation, it is
known tha, t nonresonant particles acquire an ap-
parent temperature due to the nonlinear intera, c-
tion with the waves. ' This "fake diffusion" has
been used in calculating saturation amplitudes of
unstable waves, ' and is reconsidered here in or-
der to understand ponderomotive effects in a
weakly inhomogeneous plasma, .

In one dimension, consider an electrostatic
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wave, E =P E (x)e'~', and let f(x, v, t) denote the slowly varying part of the distribution function. If
the fluctuating part of the distribution is obtained to first order in E and only low-velocity nonresonant
particles are considered, the lowest-order kinetic equation for f is

(8, +v 8„)f + (1/m)(F„—8„()B„f—(v/m)8„$8„'f —(2'/m)8„[vB„+(F „/m)8„]B„f=0,

where g(x) = (q'/m)Q IE I'/2&v' is the usual ponderomotive potential. A self-consistent electric field
associated with the resulting charge separation has been included by keeping the force I,„=—8„y,
where p is determined by Poisson's equation. Various terms in Eq. (1) have been consistently neglect-
ed in previous treatments, and it is useful to identify the implications of these approximations in some
detail. With the boundary condition that f be Maxwellian where g =0, the relevant solutions are

fz = (n /4m ~7) exp[- (2mv +g +qy)/(~2v )];

fo ——[ngnv/2am (~mv'+2()] exp[- (—,mv2+qy)/(~2v '+2()];

n, dt exp[-t5 ' —v'/v'(1+t)]
t"'(1 +t)

(2a)

(2b)

(2c)

From Eq. (1) the ponderomotive force term alone,
(1/m)8„(B„f, has been used as a basis for a. kinet-
ic treatment of parametric instabilities of an elec-
tromagnetic pump wave. ' In effect, this is equi-
valent to keeping only the time-averaged momen-
tum change in a Fokker-Planck derivation of
Eq. (1).' It gives f~, in (2a), which appears to
have the usual exponential density dependence on

g, nJ (x) =n, exp[- (|/+p)/(2mv ')]. If the diffusion
term, (v/m)8„(8„'f, which accounts for changes
in mean-square momentum, ' is also considered,
the quasilinear solution, f, is obtained, (2b).
This solution exhibits "fake heating, " ~2v '-&nzu '
+2(, the usual quasilinear effect on nonresonant
particles; and a new density dependence, no(x)
=n, (1+4&/mv ') '/' exp(- y/mv '). Use has im-
plicitly been made of the fact that the ambipolar
potential, y, is of the same order as g, since
(2b) is not a solution to order g ~ p. It is now ap-
parent that, for electrostatic waves, an exponen-
tial dependence of the density on the ponderomo-
tive pseudopotential appears only in the self-con-
sistent solution to the quasilinear problem. Not
only does the solution of the simple ponderomo-
tive force equation, fI, fail to exhibit the expect-
ed "fake heating, " but it does not give the correct
velocity moments off, except for the density to
order 5=8//mv '. The last term in Eq. (1) is high-
er order in &, and usually neglected. An exact
solution, (2c), has been found for (1) when @=0,
which is useful in illustrating some limiting fea-
tures of all these approximations. For 5«1,
Eq. (2c) yields, in the limit 5'/'Iv/v l«1,

and, for 5' 'iv/v l»1,

no 1 2 v
pl/2B1/2lvl P g Bl/P v (Sb)

Comparing (Sa) with (2b) serves as a reminder
that the basic perturbation scheme depends on
8j, whi'ch, for a Maxwellian, leads to a pertur-
bation parameter, &v2/v 2. The limiting form
(Sb) shows that even weak fields and nonresonant
interactions can produce energetic non-Mmvvell-
ian tails. At this point, some comments on the
entire procedure are appropriate. The last term
in Eq. (1) illustrates that an underlying assump-
tion of the quasilinear formulation is that I B„g/pl» 18„f/flI. Other higher-order effects which might
compete, such as nonlinear Landau damping and
resonant wave scattering, have been neglected.
However, depending on the wave in question,
these typically have a small numerical coefficient.
The explicit nonresonant particle assumption
used in deriving (1) requires that l(EQ) '8„(E f )I« ~/Ivl, which restricts the range of velocity
space under consideration, expecially in the case
of (Sb). As long as «&1, this difficulty can be
avoided by rederiving (1) using particle orbits
modified by the self-consistent ambipolar poten-
tial, p. This approach has previously been form-
ulated for localized- electric-field calculations',
however, the particle orbits were also modified
by the ponderomotive force, which would be in-
consistent with the present ordering scheme. In
fact, with the assumption of short correlation
times, y can be neglected for resonant particles
also.

For the case of transverse electromagnetic
waves, E =Q QE„(x)e' ', suppressing the self-
consistent field, p, the quasilinear equation for
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low-velocity nonresonant particles is found to
be

(8, +v„a„)f—(1/m)e„ya„ f
= (q/m)'Q (IE I/~')v, B„IE I&„'f . (4)

Although superficially similar to the electrostatic
example, the ponderomotive force term here is

new. It is not one part of a quasilinear diffusion
operator, but arises because the Lorentz force,
v&B, has components, in the direction of E and
V(v ~ E ). The former simply modifies the elec-
trostatic result, and the latter generates the pon-
deromotive force term in (4). Once again, the
stationary solution to (4) is obtained with a Max-
wellian boundary condition,

f = (no/mv„v, ) exp(- v, '/v„' v,—/v, )f „dt (1/») expbtv, -4t &~' —(~ + 1/t'v„2) ln(1 + 2t2&/m)].

For 6«1, this becomes

(6)

which is similar to the electrostatic result, (2b), except that it has the usual exponential modification
of the density in the direction of the ponderomotive force. As before, fake heating occurs in the direc-
tion of the oscillating electric field, and the (suppressed) dependence on y should not be forgotten.

The quasilinear equation for an arbitrary electromagnetic wave in a homogeneous external magnetic
field, Bo, has been obtained, and an example relevant to rf plugging is presented here. Assume an
electromagnetic field,

E Q E (s)
t(k x Id')

kg~

with k, E, and 8, mutually perpendicular, and a weak spatial variation in the parallel direction s= e~!
~ x. The nonresonant, quasilinear equation is found to be

(&, +v~~&,)f — &, p&&f = ———s„v~ p IE„ Iv~~&, IEp, ~lE " ~,e„,f

where the ponderomotive potential is

g = (q'/m)Z (IE, I'/2v )&„[v 'g(J„')'/&u(~- nQ)],
Qq Q) n

the Bessel-function argument is k~v~/0, and 0
denotes the cyclotron frequency. In view of the
previous examples, the qualitative features of
(7) are evident, i.e. , an effective force and non-

resonant thermal broadening. In the cold-particle
limit, k~v~/0 «1, the usual single-particle po-
tential is found'.

y = (q'/m) Q IZ„.I'/2(H -n').

(6)

! here. Consider lef t-circularly polarized waves,
with weak variation in the parallel direction, and
(k~v~/0) «1. Assuming all of the usual drifts are
small, to first order in all spatial gradients the
nonresonant quasilinear equation is

(Bg +vol Bs)f +vii&iisZ

D +VJ p, ~ +& ~!!8s 2D

In the opposite limit, k~v~/0» 1, the potential is
found to be reduced by approximately (k~v&/Q) ',
suggesting that nonresonant rf plugging is likely to
to be most effective in the long-wavelength, cold-
particle limit.

For a plasma confined in an inhomogeneous
magnetic field, the kinetic equation can be ob-
tained by the usual techniques, which include
averaging over the v& phase angle. ' However, in
general, the analysis is extremely complicated,
and a. single illustrative example is presented

where

f =f ( pe, s, t), e=-,'mv', p=mv~'/2B„

v~~ =+ [2(e- pBo)/m]'t2,

and

E = —(q'/m) 2 [B,/2~(~- &)]&.(B, 'IE I'). (10)
~lO

The operator D arises from 8„ I& on a function of
mand p and is given by

D =(2Bgnp)'t'(8, + B, '8„)
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The effect of the waves on magnetic confinement
is seen to be given by the parallel ponderomotive
force, which is no longer the gradient of a scalar
and, importantly now, depends on the sign of
BA(B, 'IE I') =& (e~~lE I'). The apparent perpen
dicular thermal broadening can also be estimated
as &tt = (0'/ntft, )Q lE P/2(~-&)'. Both of these
results are needed to self-consistently evaluate
wave plugging in open systems.

In conclusion, the spatial effects of low-ampli-
tude waves on a plasma have been described by a
consistent kinetic perturbation theory. A true
ponderomotive-force term arises in second-order
kinetic theory, but only for electromagnetic
waves, for which the time average of products of
terms arising from fluctuating electric fields
with terms arising from the associated fluctuat-
ing magnetic fields produces an effective force in
the direction of VIE l'. The purely electrostatic
part of the fluctuations generates a time-average
effect best described by a velocity-space diffusion
operator, which for the low-velocity nonresonant
part of the distribution produces a local, appar-
ent temperature increase in the direction of E.
Some care is required in comparing velocity mo-
ments off with macroscopic fluid quantities.
Both velocity moments off and the time average
of products of fluctuating quantities must be con-
sidered; for example, in one dimension, the

time-averaged fluid velocity is given by

u = (n)
' fdv vf (1 —(2q'/m')Q ~ 'Is~.l'J.

Finally, the treatment here has been for the non-
resonant part of the distribution function with
particle velocities less than the phase velocity of
the waves; similar methods may also be applied
in the opposite limit.
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Computer simulations of the kinetic warm-beam instability with finite-mass ions are
reported. It is shown that strong turbulence, including Langmuir collapse, stabilized the
beam-plasma instability before quasilinear plateau formation. This process decreases
significantly the beam-plasma coupling and increases the propagation distance in accord-
ance with laboratory and space observations.

The interaction of a warm electron beam with
a plasma in the kinetic regime has been the clas-
sic example of the application of guasilinear
theory. ' According to this theory the beam plas-
ma instability is stabilized in a time t = (nt/n, )~.
(n~ and n, are the plasma and beam density) with
the beam forming a quasilinear plateau, while
releasing one-third of its energy to plasma waves
and one-third to sloshing energy of the ambient
plasma. However, laboratory beam-plasma in-

teraction experiments indicated much longer en-
ergy-coupling time scales than that predicted
above. ' This coupled with the observation of
beams propagating over extremely large distances
in space' without any significant plateau forma-
tion has led to an extensive search for a nonline-
ar mechanism that can stabilize the beam-plas-
ma instability on a time scale faster than that
required for plateau formation. It was not till
recently' that a strong-turbulence theory with
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