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The behavior of the effective bulk conductivity 0, and of the effective bulk dielectric
constant E~ of a heterogeneous mixture of a conducting phase and an insulating dielectric
phase is analyzed in the vicinity of the percolation threshold. Exact considerations of a
general nature lead to the conclusion that &~ diverges as the conductivity threshold is ap-
proached from either side. The introduction of a homogeneity or scaling hypothesis
leads to relations between the critical behavior of 0-, and e, .

The behavior of classical random heterogeneous
systems near the percolation threshold has been
the subject of numerous investigations. ' Experi-
mental observations of this phenomenon have been
restricted almost entirely to measurements of
the electrical conductivity of such a system where
one pure component is conducting while the others
are nonconducting. On the theoretical side, much
numerical work has been done on the behavior of
discrete random resistor networks, and on vari-
ous discrete-lattice models of percolation using
various analytical and numerical techniques (i.e. ,
series expa. nsions). The results include expres-
sions for the singular behavior near threshold of
quantities such as the conductivity and the proba-
bility for finding an infinite cluster of the conduct-
ing material, both of them as functions of the
fraction of conducting material present, p.

The question of what occurs when the noncon-
ducting component is replaced by a very small
but nonzero conductance, or by a reactive compo-
nent (e.g. , a capacitance), has received some at-
tention within the framework of a scaling theory
of the percolation transition, 4 as well as by the

use of effective-medium theory. ' The results of
the scaling theories are at present of somewhat
limited validity since they depend on a homogen-
eity or scaling assumption which, although very
plausible, is as yet unproven.

In this Letter we show that many properties of
such a system and of similar ones near the per-
colation threshoM can be obtained without having
to make any scaling assumptions. All that is
needed are some general analyticity properties
of the bulk effective complex dielectric constant
of a random heterogeneous mixture, I(„as a
function of the (complex) dielectric constants of
the pure components. ' In this way we will show
that near the percolation threshold in a mixture
of a pure conductor and a pure dielectric we get
a singular behavior not only of the effective con-
ductivity o„but of the effective dielectric con-
stant c, as well: The dc conductivity is nonzero
only above the threshold, increasing as a power
of p -p„where p, is the critical fraction of con-
ducting materia. l at the threshold. Below p, there
is a frequency-dependent ac conductivity which
increases as the threshold is approached. The
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dc dielectric constant diverges as p, is ap-
proached from either side. At p„both e, and o,
exhibit a peculiar kind of frequency dependence,
varying as a power of ~. The frequency depen-
dences of o, and e, appear despite the fact that
in the pure phases c and v are frequency indepen-
dent. Some of these singularities have been de-
rived before but only on the basis of a scaling as-
sumption. "

In order to derive these properties, we must
solve the problem of calculating ~, for a compos-
ite material, where the local dielectric constant
K(r) varies from phase to phase but has a fixed
value in a given phase. The local electric field
inside the composite E(r) is general complex and
satisfies the following equations:

lute value squa, red i V/I' which appears in (4).
Nevertheless, the two definitions are equivalent,
since they coincide for real values of u and they
lead to a function which is analytic everywhere
else.

We suppose now that phase 2 is a pure conduc-
tor and that phase 1 is a pure dielectric. In that
case

K = E K = 4Ko, /i u&, u = 1 —inc, /4&o, .
If ( K, ) «[K,(, then u is close to 1, and we can ex-
pand f(u) around f(1). In this way find

K, =K,[1-f(u)] =-C, — + . '-[1-f(1)]. (6)
df 4m',
dN u= 1

The singular behavior near the percolation
threshold of phase 2, which occurs when the vol-
ume fraction of the conducting phase p, satisfies
p, =p„ is due to the fact that f(u) has a branch
cut along the real axis whose lower edge u,(p,)
satisfies'

V (KE) =0,

V 'f EdV=EO,

(1)

(2)

where the integral is over the entire volume of
the system and E, is the externally applied field.
The bulk effective complex dielectric constant K,
is defined by

u,(p,) &1 for p, gp„
u,(p, ) -1 for p, -p, .

Because f (u) also satisfies

f(1)&1 for p, &p„

f (1) = 1 for p, &p„

f '(1) -"f» P -P.

(7)

K, = c,+-4~v, /i~= V 'J KjE/E, ['dV.

We now restrict our discussion to the case of a
two-phase medium with (complex) dielectric con-
stants z, and K,. Because K, is a linear homogen-
eous function of ~, and ~„ it is convenient to dis-
cuss its behavior in terms of the following func-
tion:

(6)

we can write the following approximate form for
f (u), valid when p, —p, is positive and small,
and when u is sufficiently close to u,(p,):f (u) -=1 —K,/K, = 1 —J(1 —u8, ) iV&i'dV,

Q 1 —K~K2,

(4)

u =1-A — "-8 1-u+C — " 9

A, B, C, o., y&0, 0&P&1.

f() (P. P.) [ (P. P.) ]
Here p, (r) is equal to 1 when r is inside phase-1
material, and equal to 0 otherwise, while Vp=E/ where
E,. In Ref. 6 a similar function was defined [see
Eq. (7) of Ref. 6], except that the simple square
(Vp)' appeared in the integral instead of the abso- Using this form to evaluate the terms in Eq. (6),

we get

K, —=
[C(

'
—

~], „+ . ' (A(p, -p,)"+B[C(p, p,) ] ), —

which is a valid approximation as long as (u —1)f"(1)«f '(1), i.e. ,

(1 —p)/C(p, —p,)~«4~v, /e, cu. (12)

Thus, while the effective conductivity v, tends to zero as p, -p„ the effective dielectric constant c,
increases as (p, -p,) ~&' ~& except for a small region around p, whose size is proportional to &u'~~.

For p, &p„ i.e. , below the percolation threshold of phase 2, it is convenient to consider a different
function, '

(p(M) =-1- «, /K, = 1-A'(p, -p, )
' ——B '[1 —u+C'(p, -p, ) ~']',
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where

A', C', a', y'&O. (i4)

The same B and p from Eq. (9) appear again here because for p, =p, the two expressions (9) and (13)
must satisfy the following relation:

(1 —f)(1 —0) =1 —Q.

By analogy with (6), (11), and (12) we now get

1 1 „1—P(1) i&a dP—= —[1 —(p(u) ]-=+
Ke K~ 4~v, du

= —, &&'(p. -p.)" +B '[~'(p. -p,)']' j+ [,( ) ].,
which is valid when

P/C '(p, p, )—~' «4no, /e, (o

In this case, it is also true that

ImK, '«ReK, ',

so that c, and v, are given by

e.=e '(&'(p, -P ) +B '[&'(P.-P )

(i7)

(18)

(i9)

om l~'(P. -p. ' "

For any p, &p„we can always choose (u to be
small enough so as to satisfy (17), as well as
make o, arbitrarily small. At the same time,
e, can be made to attain large values (i.e., far
in excess of e,) by making the denominator of (19)
small enough to begin with. Experiments to ob-
serve such an increase in c, just below the per-
colation threshold would provide an obvious test
for this theory.

The physical reason for the divergence of e,
as p, is approached from below is the existence
of many almost pure conducting channels which
stretch across the entire length of the system
and are blocked off only by very thin barriers.
Every channel of this type contributes an abnor-
mally large capacitance, and all of these are con-
nected in parallel. This picture also suggests
that there may be strong nonlinearities in the di-
electric response when c, is large due to the
large electric fields in the thin barriers. Like-
wise, quantum-mechanical tunneling through the
barriers may become important near p, .

Another point worth noting is that for a super-
conductor-normal-metal mixture, 0,- ~ as the
percolation threshold is approached from below.
If the microscopic geometry is then the same as
or similar to that of the normal-metal-dielectric
mixture discussed above, the critical behavior
of o, just below the superconductivity threshold

(2o)

K, = BK, K,
' = Be, (47HZ, /l(d)'

so that 0, and e, satisfy

0 (d Q (de e

(21)

(22)

In order to make further progress, we now as-
sume, after Straley' and Efros and Shklovskii, '
that m:—z,/z, has the following homogeneity or
scaling properties as a function of h = ~,/~, and
of t p, -p, when both of—these variables are
small:

I, I tl "z,(I /I tl') for t& 0,
m(t, h) = '

Itl "z (I/ltlr) for t&0.
(23)

A similar hypothesis has also been made by Har-
ris and Fisch. 4 At present, the reasons for mak-
ing such a hypothesis are that if is obeyed by ef-
fective-medium theory and by the Bethe-lattice
model, and that one expects such a behavior by
the analyogy with ordinary critical behavior at a
second-order phase transition. In particular, the

will be identical to the critical behavior of a, just
below the normal-conductivity threshold.

At p, p„we cannot expand f(u) around u=1,
because that is then a branch point of the function.
Returning to Eg. (9) we see, however, that in this
case we get
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sharp conductivity threshold at t =0 is only ob-
served for k=0. Furthermore, our Eqs. (S) and

(13), while they do not automatically satisfy this
hypothesis, are nevertheless very suggestive in
that the branch-cut part by itself obeys scaling
on either side of p, . In order to show that the
full expressions also obey Eq. (23), we would
have to demonstrate that n&yP, o."&y'(1 —P),
and y =y'. We note that our scaling assumption
is of a maximal type since we assume that y =y'.
A less drastic assumption would obviously lead

~,(x) =&,+B,x+. . .
(24)

z (x)= B x -C x'+. ..,
where all the coefficients which appear are posi-
tive. In this way we get the following results for
Kq '.

to weaker results than those that we will now pro-
ceed to present.

Noting the fact that E (0) must vanish (because
K~ = 0 entails z, .= 0 below the threshold), we can
expand E, (x) for small x as follows:

~, =e, B,( p, -p, ) y~~'+(4so, /iu&)A, (p, -p, ) ys, for p, & p

K = E~B (p, -p,) ~ ' '& —(i&us, '/4~v, )C (p, -p, ) " ', for p, (p, .
(25)

For p, =p, we get the same results as before.
The values of the critical indices in Eqs. (23)

and (25) can be obtained from results of numeri-
cal simulations of random resistor networks that
have been published before. "" In this way we
find

yP = 1.6 + 0.1, y(1 —P) = 0.6 + 0.1,

y(2 —P) = 2.8+ 0.3, P=0.73 + 0.05.
(26)

We note that the problem of experimentally de-
termining the correct scaling functions F+ and E
in (23) requires that measurements of ~, be made
for various values of h at small t. Different val-
ues of 0 can be obtained by using mixtures of vari-
ous pairs of good and bad conductors (the mix-
tures must all have similar microscopic geome-
tries). Other ways for getting various values of
h are by using the normal-metal-superconductor
mixture, or a metal-dielectric mixture. In the
latter case, complex values of h are obtained,
and both the magnitude and the phase of h can con-
veniently be made to vary by changing the fre-
quency. "' Because other physical properties
are also described by the same function f (u) or
m(t, It), they too can exhibit critical behavior
near the percolation threshold; e.g. , a mixture
of a good and a bad conductor of heat will exhibit
critical behavior in the effective heat conductivity
near the percolation threshold of the good con-
ductor.

Finally, we would like to mention the intrigu-
ing possibility of designing composite materials

! close to a percolation threshold with a large ef-
fective dielectric constant and exotic optical prop-
erties.
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