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The pseudoparticle-induced multiquark interaction is shown to produce a spontaneously
generated quark mass as calculated by a Hartree-rock treatment. Hence pseudoparticles
lead to a dynamical mechanism for spontaneous breaking of chiral SU(N) |3SU(N) for N
Qavors.

Quantum chromodynamics (QCD) is a theory of the strong interactions which starts off with massless
quarks and a chiral SU(N) SSU(N) symmetry, where N is the number of flavors. In the physical world,
however, quarks appear to be massive and the broken chiral symmetry is realized in the Nambu-Gold-
stone mode. But what is responsible for generating a mass for the quarks and so spontaneously break-
ing the chiral symmetry has been an open question. Recently Callan, Dashen, and Gross' (CDG) have
proposed that the answer, at least in two space-time dimensions, is provided by pseudoparticles and
their interaction with fermions. I have found that dynamical. quark-mass generation via pseudoparticles
does occur in four dimensions.

My starting point is the effective Lagrangian found by 't Hooft' for a color-SU(2) gauge-theory pseudo-
particle' interacting with N flavors of massless quarks,
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where p is the pseudoparticle size, p., is the renormalization subtraction point, integration over d z
gives energy-momentum conservation, and
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For the case of two flavors,

Because the coefficient of ln(t].,p) is that of the
Callan-Symanzik p coefficient for g ( po), one may
to this one-loop order replace gby the running
coupling constant g(p).

Since the 2N fermion interaction of this effec-
tive Lagrangian has the chiral-symmetry prop-
perties of the determinant of an N xN matrix, it
is invariant under chiral SU(N) N)SU(N). One
therefore has a situation similar to that of the
Nambu-Jona-Lasinio model4 and one may ask
whether the fermions without a bare mass may
nevertheless dynamically develop a mass due to
the self-energy from this induced 2N interaction.
To answer this one looks at the self-consistent or
Hartree-Fock equation for the quark mass opera-
tor.

For heuristic purposes I shall do the calcula-
tion in two different ways: The first is more
transparent but is more approximate; the second
justifies some of the assumptions and leads to
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FIG. 1. Equation for the quark mass operator for

N=2.

! additional results.
Let us consider the quark-mass operator equa-

tion for N = 2 and for pseudoparticle of fixed size
p. The integral equation for the quark mass op-
erator in lowest-order approximation is repre-
sented graphically in Fig. I, where on the left is
shown the mass operator, and the right side the
vertex of the pseudoparticle-induced effective
four-quark interaction with the internal line being
the full massive-quark propagator. The resulting
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equation is

d'q m(q)E(p')F(q')
g (2ff)' q'+ m'(q)

(4)

where C =2S00 and we have introduced cutoff fac-
tors F(p')F(q') in the definition of the vertex.
This is done since S,f f [Eq. (1)] is only valid
outside the pseudoparticle (which I have located
at the origin). From the structure of (4) it is ap-
parent that m(p) = mE(p'), hence

Disregarding the trivial solution m =0, one finds

Bm ' „2&-2, ~lP d q 1
g' p (2ff)4 q'+ m'

The result of the Euclidean integration is

-SF(x)SF(-x) ~x ',

S„(x)= y"x/2''(x')'.
(9)

(io)

To reproduce the factor of (x'+ p') ' exactly, I
modify SF(x),

y x+ip
F( 2 ff 2(x 2 + p2) 2 &

so that

I would like to repeat the calculation now with-
out having to use a cutoff, and also including the
integration over all pseudoparticle sizes which I
have so far ignored. I begin with the observation
that Z, ff only approximately reproduces the exact
massless-fermion contribution to the vacuum-to-
vacuum amplitude computed by 't Hooft. The ex-
act answer has a factor of (x'+ p') ' which at
large distances only is reproduced by massless-
fermion propagators in coordinate configuration
so that

At 2 1es /g p2m ].n - +1,8&' m'p' (7) -SF(x)SF(-x) ~(x'+ p') '. (i2)

where C=0.055. Since the right-hand side of (7)
is ~ 0, there is a spontaneously generated quark
mass for

0 (G(g/8ff2)4s8& /2 ( 1 (8)

The result is, of course, nonperturbative.
The question now is whether for reasonable

values of g the inequality (8) is satisfied. It turns
out that it is for —,', g2/8ff2-1. 8, For example, if
we pick the value g'/8ff2 = 2 (g'/4ff =0.8) at which
CDG predict' that hadronic processes occur (i.e.,
confinement), then m =4/p. For values of p on
the order of an inverse pion mass, the quark
mass comes out to be several hundred MeV. It is
also important that for this value of the coupling
the density' of pseudoparticles, 0.26(8~2/g')4
xexp(-8ff'/g') =0.36, is small enough so that the
dilute-gas approximation is reasonable. As for
the neglect of the m =0 solution, one can show4

that the energy of the vacuum for massive ferm-
ions is lower than that for massless ones.

Now + ff will give the exact answer for the vac-
uum-to-vacuum amplitude, provided that one
uses this fermion propagator SF(x) modified to
take into account the presence of the pseudopar-
ticle.

The Euclidean Fourier transform of (11) is

SF(p) = p K,(p~p') + iK,(pV p'),

where the K„are modified Bessel functions of
integral order which have the following integral
representation:

(Z) ( Z)n J &
tn2i4tf -(n+1)df-

and, asymptotically,

(i4)

For the massive-fermion Euclidean propagator in
the presence of an pseudoparticle of size p, one
has

(16)

S (p) reduces to the massless propagator SF(p) (13) as m -0. Furthermore, (16) becomes the usual
massive-fermion propagator (i p'+ )m/(p + 2m)a2t large distances, as can be seen by expanding K, , in
(16) using the series expansions,

Kn(z) =-lnz -y+ln2+. . . , K,(z) =z '+. . . , (i7)
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and keeping the lowest-order term, z
The self-consistent integral equation for the quark mass (Fig. 1), with use of the modified propagator

S (p), is

8''
2q 2' 2 2 d q pmKl(p(q + m ) )

g2 (2ll)4 (q2 + m2)ll2 (18)

where for the moment I still keep p fixed. In (18)
I no longer have cutoff factors as in (4) since S (P)
explicitly takes the pseudoparticle size into ac-
count, and indeed the integral is finite due to the
exponential damping provided by K,(p(q'+ m')"') ~

One may also notice that I have taken ~ to be a
constant in (18) independent of momentum. This
point is discussed below.

Again disregarding the trivial solution to (18),
i.e., m=0, the result of the integration is

1=C, e " ', pmK, (pm).4m2

If one again uses g2/8&2 =-', , one finds a result,
m = 6/p, similar to that obtained from (7).

But now one can go further and perform the p
integration. The integral [to one-loop order in
the expansion of g(p) as in (1)] is

p, 'm j"dpp'K, (p ). (20)

One notes that the integrand goes to zero at both
ends of the scale and that it has a fairly sharp
maximum at pm=5. 5 [where, as was seen, g2/8&2
= -', to satisfy (19)]. Hence it was a reasonable
approximation to take a single pseudoparticle of
fixed size. More importantly, the ir divergence
which seemed to be present in ~,ff as p-~ does
not appear here because of the exponential damp-
ing of K, (pm). (As p —0 the integral converges
because of asymptotic freedom. ) What appears
to be happening is that essentially one size (or at
least a small range of sizes) of pseudoparticle is
responsible for interacting with fermions to gen-
erate a fermion mass.

If one actually performs the integration of (20),
then m is expressed in terms of g(p, ) and one
must pick a renormalization subtraction point p,
since the result is

g=C 2 exp — 2 I'4 I'3

If one picks g'(1l,)/8&'=-', with p, ,=100 MeV,
which is consistent with the choice above for
g'(p)/8&', one finds that again m= 550 MeV. This
also confirms our observation that essentially one
pseudoparticle size is involved.

Turning one's attention to the question of the
momentum dependence of m, one can argue that
if it is generally true that only one pseudoparticle
size contributes, then the approach followed in
the first calculation (4) is valid. In particular,
the factorization of the cutoff factors into E(Jl)I"(q)
is allowed. However, I have shown that one pseu-
doparticle size contributes by performing the sec-
ond calculation (18) only for constant m. While I
believe that this approach is a reasonable approx-
imation and that the result is correct, to estab-
lish it rigorously involves a complicated, highly
nonlinear integral equation for m (P) which has so
far proved intractable.

I have also calculated the quark mass for the
cases N =3,4. I find masses slightly smaller than
that for N =2, and they occur for smaller coupling
and much lower density. This is in contrast to
the two-dimensional work of CDG where there is
a phase transition at N =2 so thats=0 for N&2
andm is exceedingly small for N =2. I find no
evidence for such a phase transition in four di-
mensions, though there may well be one for high
enough N.

All these calculations have been done for a col-
or-SU(2) gauge theory. Of course, QCD has SU(3)
for the color gauge group. I expect that the quali-
tative features of this work will also be found for
color-SU(3), but the actual values of the predicted
quark mass will probably be somewhat different.
These are the values, of course, that should be
comp."..red with whatever one can deduce from ex-
perimental evidence. This extension to color-
SU(3) is currently under investigation and the re-
sults will be the subject of a future publication.

The conclusions of this present work are that
pseudoparticle interactions with massless quarks
have extensive consequences. Not only do they
solve the U„(1) problem" so that the apparent
chiral U(N) U(N) symmetry of the QCD Lagran-
gian is really only SU(N) S SU(N), more signifi-
cantly, this quark-pseudoparticle interaction also
produces a spontaneously generated mass for. the
quark, thus dynamically breaking the chiral SU(N)

SU(N) symmetry. This, as usual, produces a
multiplet of massless Nambu-Goldstone pseudo-
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scalar mesons in the adjoint representation of
SU(N) which arise from iterated bubble graphs.
For the mesons to acquire (different) masses it
requires mechanisms for conventional breaking
of SU(N) symmetry [hence explicitly breaking
SU(N) 3 SU(N)] as treated, for example, in the
Gell-Mann-Oakes-Renner model. '
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Following reports of anomalous dielectron prediction in the mass region near 6 GeV at
400 GeV, we searched for an enchancement in the reaction e+e —hadrons and e+e

e+& at SPEAR in the center-of-mass energy range 5.67-6.43 GeV. The leptonic and
hadronic cross sections show no statistically significant peaks. In this mass range, 95%
confidence level upper limits for the decay width into electron pairs are less than 200
eV for a narrow resonance which decays predominantly either into hadrons or into elec-
tron pairs.

Following reports of an enhancement near 6
GeV in the invariant-mass spectrum of e'e pairs
produced in high-energy hadron-hadron colli-
sions, "we measured the e'e total cross sec-
tion in 4-MeV intervals in the center-of-mass en-
ergy range 5.67 to 6.43 GeV, using the SPEAR

electron-positron colliding-beams machine. The
detector triggered on both charged and neutral
particles. An integrated luminosity of about 10
nb ' was obtained in each energy interval, corre-
sponding to about 75 observed hadronic events.
The sensitivity to narrow resonances was about
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