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It is argued that electronic states should be localized in any wire whose impurity resis-
tance is greater than about 10 kP. At sufficiently low temperatures this will lead to a T 2

increase in resistance because one-dimensional phonons or excited electrons are needed
to cause transitions between localized states. An estimate is made of the temperature
needed to observe this effect.

Mott and Twose' showed that electrons moving
in a one-dimensional static potential would be in
localized states if there were any disorder in the
potential. This has been shown with greater rig-
or by later workers (see the review by Ishii') and
there is no doubt that it implies that the electrons
can only transport electric current if energy is
available to enable them to hop from one localized
state to another; as a result the electrical con-
ductivity goes exponentially to zero as the tem-
perature goes to zero. It is also known that for
the case of weak disorder the length of the local-
ized state is identical to the quantity which would
normally be calculated for the mean free path for
backward scattering. ' The proofs of this result
have all been restricted to electrons moving in a,

strictly one-dimensional potential (or to equiva-
lent tight-binding models), but it has seemed like-
ly that the result that all states are localized is
more general. An argument to show that any. sys-
tem of a given cross section will eventually be-
have one-dimensionally, with localized states on-
ly, if it becomes sufficiently long was given by
Yuval. 4 This argument is similar to the one used
by Edwards and Thouless' and subsequently used
by Licciardello and Thouless' to discuss the mini-
mum metallic conductivity in two-dimensional
systems. In this Letter the argument is devel-
oped further for one-dimensional systems. It is.
shown that once the zero-temperature resistance
of a wire exceeds a critical value, which is likely
to be 10 or 20 kQ, the resistance should increase
exponentially with length instead of linearly. At
higher temperatures the localization of electron
states will not be apparent because the phonons
will cause electrons to hop from one state to
another, but as the temperature is lowered the
conductance should drop in a characteristic fash-
ion—initially as a power of the temperature, Es-
timates are made of conditions under which this
effect might be experimentally observa, ble.

Consider a metallic wire of length L and cross-

sectional area A. In this system suppose that the
electrons move in a potential which is macroscop-
ically uniform but which has sufficient irregular-
ity to give the conductivity of the bulk metal a fi-
nite value v at zero temperature, The density of
electron states is dn/dE per unit volume per unit
energy. The individual energy levels are sensi-
tive to the boundary conditions applied at the ends
of the wire, and can be shifted by an amount of
order 5/t, where t is the time it takes for an
electron to diffuse to the end of the wire. This
time is equal to L'/D, where D is the diffusion
constant for an electron, and this can be related
to the conductivity by the Einstein relation for a
degenerate electron gas v= ,e'Ddn/dE. —Combin-
ing these two we get .

k 5 2odE 6 2 dE
t ~e L'dn e' r dN'

where r is the resistance of the wire and dE/dN
is the average spacing between energy levels.

This relation between resistance, density of
states, and the strength of coupling to the bound-
ary can be obtained in another way. If the wire is
connected between two metallic reservoirs with
a high density of degenerate electrons held at dif-
ferent potentials, current will flow by means of
the e VdN/dE levels in the wire lying between the
Fermi levels at the two ends, and each level on
the average carries a current of order e/t.

Now consider what happens when two similar
(but not identical) wires of length I. are joined
end to end. There is a matrix element of order
a/t connecting an energy level in one wire to any
level in the other wire. When a'/f is greater than
the spacing between levels, the energy levels of
the combined system will be some complicated
combination of energy levels of the two individual
subsystems. Under these conditions it is not im-
plausible that h/t for the combined system should
be a quarter of its value for each subsystem; but
it follows from Eq. (I) if the resistance of the two
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FIG. 1. Energy levels on two adjacent similar blocks
of material. The spacing between energy levels is dE/
dN and the coupling between levels in the two blocks is
5/t where t is given by Eq. (1).

wires in series is the sum of their individual re-
sistances. If, on the other hand, 5/t is much less
than the spacing between levels the energy levels
of the combined system are only slightly per-
turbed from the levels of the indiviual subsys-
tems. Figure 1 shows how the levels in the two
subsystems, which will be uncorrelated between
one subsystem and the other, may be arranged.
A typical spacing between a level on one subsys-
tem and the nearest level with the same spin di-
rection on the other subsystem is dE/diV. If this
is greater than 5/t we can expect the levels in a
long system made up of many such subsystems
arranged in a line to be obtainable by perturba-
tion theory from a level on a single subsystem,
and so to be exponentia, lly localized with a range
no greater than the length of a single subsystem.
From Eq. (I) the condition necessary for this ar-
gument to go through is

r» 25/e'.

Since it/e' has a value of about 4 kQ we conclude
that above a resistance of 10 kO or so a wire at
zero temperature will have a resistance that in-
creases exponentially instead of linearly with its
length.

This result of course conflicts with common ex-
perience, and we must examine what conditions
are necessary to observe this effect, At high
temperatures the localization of the electron eig-
enstates is of no practical importance, since pho-
nons will cause transitions between the localized
states long before the electrons can travel a dis-
tance comparable with the localization length.
Under these circumstances one can describe the
motion of an electron in terms of a wave packet
made up of localized wave functions much larger
than the size of the wave packet, which will then
diffuse until the emission or absorption of a pho-
non causes a transition to another wave packet.
Then the mobility of an electron in the wire will
be essentially the same as the mobility in the

bulk metal, since the diffusion of the electron
over distances of the order of the distance be-
tween phonon-scattering events will not be affect-
ed by the existence of a much longer localization
length. As the temperature is lowered the scat-
tering by phonons becomes less effective and
eventually electrons are able to diffuse a distance
of the order of the localization distance between
phonon-scattering events. The size of the local-
ized states is given by the length of wire for
which the resistance is of order 2R/e'. If we
take the standard formula for the conductivity of
an electron gas

o =ne'v/m = (e'/I)(k F2y/3v'), (3)

where A. is the mean free path and 0 F is the wave
number of an electron at the Fermi surface, we
find that the size of a localized state is given by

I- = 2Ak 'A. /3m' (4)

and the time taken for an electron to diffuse over
this distance i.s

Therefore the condition for the localization of the
eigenstates to be apparent is approximately

~ph &(2A'k F'/3n')T. (6)

The ratio of 7 to 7 &h at room temperature is
F- 1, where F is the resistance ratio, and the
low-tempera, ture behavior of 7 ~h can be estimated
on the basis of models of electron-phonon scat-
tering. In a clean bulk material v p~ increases as
T ' at low temperatures, but if qA. &+1, where q
=k sT/Rc is the wave number of thermal phonons,
then it increases as T '. An estimate of 7 ph

un-
der these conditions gives

I/r ph
= 44( I —I)aq'Xk F

'T ', (7)

P is a numerical constant which is probably not
very far from unity. ' Clearly a high level of im-
purity scattering (low resistance ratio) will make
the localization easier to observe, and a low re-
sistance ratio is almost inevitable for a very thin
wire. If we substitute Eq. (7) in (6) we find that

where a is the ratio of room temperature to the
Debye temperature. For a clean material this
formula must be divided by 2qA. , and if Aq' is less
than unity the phonons are one-dimensional and
the formula should be divided by Aq'. lt is also
necessary to consider electron-electron scatter-
ing, which gives a relaxation rate of the form
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the temperature at which localization is apparent
is inversely proportional to A' ', or the diameter
of the wire. For reasonable values of the param-
eters this makes Aq' greater than unity, but not
large, so a one-dimensional-phonon behavior sets
in at a slightly lower temperature. When elec-
tron-electron scattering predominates 7 pp in Eq.
(6) should be replaced by T„asgiven in Eq. (8),
and then the temperature is inversely proportion-
al to A. Below this temperature the electrons
are free to diffuse over the distance L, but can
then go no further until a phonon or another elec-
tron causes a transition to a new wave packet of
states. In this temperature range the resistance
will increase as T ', whether the transitions are
caused by electrons or one-dimensional phonons.
Finally we may be concerned with temperatures
so low that k&T is of the order of the spacing be-
tween overlapping localized states, and below
such temperatures we should describe the conduc-
tion as activated hopping between localized states;
in one dimension' the resistance for this process
increases exponentially with T '.

If we consider a system with a cross-sectional
a,rea of 2.5 & 10 "m', a,n impurity mean free path
of 0.5X10 ' m, and kF=1.2XIO" m ', then the
length of localized states given by Eq. (4) is about
0.012 mm. With j. —1 equal to 0.01 and the sound

velocity c equal to 4000 m/s, the condition (6) is
satisfied at about 1.7 K, while if Tzb is replaced
by 7„ the condition is satisfied at about 1.2 K.
In this example the electron-electron scattering
is slightly more important, and so the T ' in-
crease in resistance should occur below about
1.2 K. The energy spacing between overlapping
localized states is of order 5&10 'k

B under these
conditions, so that the exponentially rising resis-
tance should be observed in the region of 50 pK.

I am particularly grateful to Dr. E. M. Forgan
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importance of the condition @~&1 and of the elec-
tron-electron interaction,

'N. F. Mott and %. D. Twose, Adv. Phys. 10, 107
(1961),

K. Ishii, Prog. Theor. Phys. , Suppl. 53, 77 (1973).
'D. J. Thouless, J. Phys. C 6, L49 (1973).
46. Yuval, Phys. Lett. 53A, 136 (1975).
5J. T. Edwards and D. J. Thouless, J. Phys. C 5,

807 (1972).
6D. C. Licciardello and D. J. Thouless, Phys. Rev.

Lett. 35, 1475 (1975), and J. Phys. C 8, 4157 (1975).
C. Kittel, Introduction to Solid State Physics (Wiley,

New York, 1971), 4th Ed. , p. 283.
J. Kurkij5, rvi, Phys. Bev. 8 8, 922 (1973}.

Electron-Hole Liquid and Biexciton Pocket in AgBr

D. Hulin, A. Mysyrowicz, M. Combescot, I. Pelant, "and C. Benoit a la Guillaume
Group de Physique des Solides de l'Ecole Normale Superieure, University Pa~is VII,

Tour 23, 75005 Paris, France
(Received 30 June 1977)

A new emission band in AgBr is attributed to electron-hole —liquid recombination. Ex-
citonic molecules appears only at higher excitation and temperature, corresponding to a
limited region of the (T, n) plane called biexciton pocket.

The occurrence of a liquid phase of degenerate
electron-hole plasma, (EHL) is now well estab-
lished in Ge, ' Si,' and GaP. ' The properties of
the liquid are in good agreement with theory, pro-
vided the detailed band parameters of these semi-
conductors (in particular their indirect-band-
transition structure) is properly taken into ac-
count. Recently, it has been shown by Keldysh
and Silin, ' and Beni and Rice,' that the interaction
between free carriers and the lattice in polar ma-
terials increases the stability of EHL, and makes
it possible to observe it even in direct-gap com-
pounds. Experiments performed in CdS'" and

CdSe' confirm these predictions. The values of
carriers density n and liquid binding energy y are
here also in fair agreement with calculations.

In this Letter, we present experimental evi-
dence for the existence of EHL in AgBr. How-
ever, in contrast to the other cases mentioned
above, the binding energy of this strongly polar
compound with indirect-gap structure is signifi-
cantly larger than derived from the theory. ' This
makes it possible to observe the liquid with tem-
peratures in excess of 100 K and even suggests
a, much higher critical temperature of the EHL.

But AgBr also exhibits another novel character-
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