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An analysis of earlier data on the shear viscosity of pure and binary fluids leads to the
expected universal description of the critical transport properties.

It is customary to assume that any physical
property I' (E &0) of a system near a critical
point can be written as the sum of a critical partI'"" due to the critical behavior of the system
and a regular part I "~present in the absence of
criticality. ' Thus I""~ is a positive analytic func-
tion of both the temperature T and the other pa-
rameter N. This assumption has been used to
explain dynamic properties of critical systems
such as the thermal conductivity' and diffusivity'
of pure fluids and the shear viscosity of both pure
and binary fluids. '4 However, this partition does
not always give a convincing description of these
properties. " In particular the critical viscosity
g"" cannot scale as do the other critical proper-
ties. ' The purpose of this Letter is to show how
this apparent difficulty can be solved in agree-
ment with the current theoretical expectations.

First, renormalization-group theory predicts
that any anomalous kinetic coefficient K(T, N) can
be approximated in the form"

where the exponents yl, and +, are universal. The
leading amplitude E„ the amplitudes K, of the
nonanalytic corrections, and K~ the background
part of K are analytic functions of T and ¹ f, (x)
(with i = 0, 1.. . .) are functions of the scaling pa-
rameter x =t 8/~ n~, where t = (T —T,)/T „n= (N
-N, )N„and P is the exponent of the coexistence
curve ~n~ = B(-t)s. The functions f, (x) have uni-
versal asymptotic behaviors. In particular

lim f, (x) —= 1 and lim fo(x) ccx"&ts.

Secondly, in the particular case for the thermal
or mass conductivity A of pure or binary fluids
and for the shear viscosity g of both systems a
recent renormalization-group treatment of the
dynamics of critical fluids predicted that'

yz+yz =y- v with y„=0.04,

A,go=RkBT, )to)o
' with R = (5v)

where kB is the Boltzmann's constant, X =X,t "&

with y—- 1.24 is the static susceptibility of the or-
der parameter and $ = $, t & with v= 0.63 is the
correlation length.

Finally it is worth noticing that Ref. 7 can be
regarded as a more accurate statement of the
mode-coupling theory' in which the approxima-
tions y =2v and y„=—0 were made. Thus go—= q"~
in this theory. Since more precisely y„«yA it
could be expected that g, = g"~»g~ in a sizable
range of temperatures near T„'but A~=X"&. On
the other hand, the nonanalytic corrections are
also implicit in the mode-coupling theory where
they are generated by the regular coefficients. '

A careful analysis of the shear viscosity data
for critical fluids will provide a crucial test of
the above predictions. To this end I have select-
ed the numerical data reported in literature for
ethane and xenon, " and for the mixtures of iso-
butyric acid-water, ""2, 6 lutidine-water, "and
3-methylpentane-nitroethane. '4 I have estimat-
ed, following oxtoby, " the temperature ranges R
in which the viscosity data are not aff ected by
shear by more than I%%uo and I have neglected the
data which are not in B. R is given in Table I.

I have paid particular attention to the very care-
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TABLE I. Experimental and theoretical values for the critical exponent of the viscos-
ityy and the corresponding universal parameter y

' of decoupled-mode theory. R is the
71 rl

temperature range in which viscosity data are not affected by shear by more than 1%.

3-methylpentane-nitroethane

Isobutyric acid-water
2.6 lutidine-water
Xenon f

Theories
|,'assuming v = 0.6+ 0.01)

t ~ 1.4x 10
t o3.0 x 10-5

t o 4.0 x 10
t o9.3x10
t o 9.3x 10-'
t~2.4x10 4

0,0398+ 0.0003 "
0.0398+ 0.0002 ~

0.0387 ~ 0.0018
0.0394+ 0.0032
0.0390~ 0.0027
0.0348 + 0.0066

0.0573+ 0.0005 '
0.0593 + 0.0006 b

0.0589+ 0.0031
0.0629+ 0.0043
0.0659+ 0.0041
0.0392 + 0.0043

0.0340 + 0.0006"

'Ref. 4, y ——170 s '.
Ref. 4 y=700s '

cRef 13

dRef. ]0.
~Ref. 12.
Ref. 9.

&Ref, 7
"Ref. 16.
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FIG. 1. Heduced viscosities at a 170 s ' shear rate
as a function of the reduced temperature t = (T T,)/T, —
for the critical mixture of 3-methylpentane and nitro-
ethane (see text).

ful work of Tsai and McIntyre for the mixture of
nitroethane and 3-methylpentane. This mixture
has an interesting property: The viscosities q„
of nitroethane and g~ of 3-methylpentane have
nearly the same temperature dependence. Con-
sequently the regular viscosity q"& of the mix-
ture must be proportional to g„or g~. In order
to reduce the small difference between the tem-
perature dependences of q„and g~ I have calcu-
lated the quantities 2g/(q„+gr) and g(g„'+gr ')/
2 using the values obtained for the shear rate o
=170 8 '. In Fig. 1, a log-log plot of these two
quantities versus temperature shows that each of
them is proportional to t '~ with y„=0.040, The
deviations from this power law are always very
much smaller than the experimental uncertainties
(=+ 1.3%), even for the farthest point from T,.
Therefore, this simple analysis shows that the
leading amplitude g, of the viscosity is propor-

tional and approximately equal to the reqular vis-
cosity q "~ while the sum of the nonanalytic cor-
rections and of g& is lower than 10 'g, . This
agrees perfectly with the above theoretical re-
sults.

To verify this result and to test its generality
I have first fitted expression (1) with x = 1 to all
the available viscosity data at N =N, . I have used
the statistical refining method of Tournarie" in
which the adjustable parameters are varied to-
gether. Therefore the "standard deviations" ob-
tained for a parameter reflects the deviations in
the other ones. Furthermore, it also reflects
the systematic deviations. " As a first result I
have found that nonanalytic corrections are not
necessary to account for the temperature depen-
dence of the viscosity, except for ethane. Con-
sequently the expression q =q, t '& q +wraith q, (T,
N, ) =go(T„N,)(I+@,t+ti, f'+. . .) has been fitted to
the data using y„,g„g~,g„q„.. . as adjustable
parameters. Thus we find that y„, g„and g~
are not well defined. This means that either g~
or y„ is a redundant parameter. Assuming first
that g~ & 0 this term remains undetermined but it
is always nearly zero (typically qe ~10 g,) so
that the additional constraint g~ = 0 does not change
the quality" of the fits but somewhat reduces the
errors. The values of y„given in Table I have
been obtained in this way. On the other hand,
w'1th gg &0 y q p pop RDQd pg are stil l undetermined
but the results (y„-0 and q, = —qe-~) indicate
that the data can be described by q =q, ' (I -y „'
&& Int). Fits to this expression with g, '(T, N, ) ex-
panded in power of t give for y„' the values list-
ed in Table I.

This statistical analysis shows that both a pow-
er-law divergence with g~ = 0 or a logarithmic
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FIG. 2. Scaled reduced viscosity f(x) =t'" q(7', N)/
qo(T, N) as a function of the scaling parameter x =ta/
)&), for the mixture of 3-methylpentane and nitroethane.

divergence can describe the data in the investi-
gated temperature ranges. However, the scatter
of y„' values is greater than for y„. Further-
more, y „ is found to have nearly the value expect-
ed from the theory' while y„' disagrees with the
result of decoupled-mode approximation": y „'
= 8v/157|'= 0.034. Therefore the shear viscosity
can be regarded as better described by a power
law. For binary solutions this fact has been no-
ticed as early as 1963,"assuming an Arrhenius-
like behavior for t), (T, N,).

An important additional point is the comparison
of the viscosity data at N=t N, with the scaling ex-
pression (1). Because of the particular property
previously noticed for the 3-methylpentane-nitro-
ethane mixture rt, (T,N) can be written as g, (T, N)
=I),(T,N, )y(N), where cp(N) is a function of N on-
ly. An inspection of the data" shows that p(N)
can be well approximated by p '(N) = (1 —an) (1
—bn) ', where a and b are constants.

Figure 2 shows the experimental function f,(x)
which is obtained for a =0.39 and b =0.12, using"
P = 0.34 and the results inferred from the data at
N=N, : t),(T„N,) =0.3381+0.0006 cP, ri, = —2.7
+ 0.3, g2 = —49 + 18, g3 = 1140+ 310, and y „=0.0398.
All the data for' a=700 s ' are represented even
for pure 3-methylpentane and nitroethane. Of
course, I obtain quite similar results for the da-
ta at c= 170 s '. For sake of clarity, they are
not shown in Fig. 2.

As quoted in Ref. 4 the average error of a sam-
ple viscosity measurement is within + 0.005 cP.
This corresponds to relative errors varying
from+ 1/g to +2/o. Although these errors are cer-
tainly greater for measurements on the many dif-
ferent samples they are consistent with the scat-

ter of data points in Fig. 2. Furthermore, the
parameters a and b have not been adjusted to
give minimum scatter.

Therefore, well within the experimental errors
f,(x) is a single-valued function of x =ts/~n~ which
has the expected properties:

lim f, (x) =1 and lim f, (x) o-x"& s

with 0.109~ y„/p~ 0.121, in good agreement with
the value 0.117+0.004 obtained using p =0.34+ 0.01
and y z-—0.04.

These results are not uniquely related to this
particular mixture. In the same way I obtain
quite similar results for the other systems. Non-
analytic corrections can be estimated for ethane
for which a single term, t"'f, (x) with g. , =0.5+0.1,
is a good approximation. Within the experimen-
tal errors each function f, (x) has the same form
but is shifted by different amounts along the x
axis. If we use Bts/~n~ as the scaling parameter
I obtain for f,(x) an universal function which de-
scribes the viscosities of all the studied critical
systems.

Finally it is interesting to test relations (2) and

(3). For binary solutions there is no measure-
ments of the mass conductivity so that EIIs. (2)
and (3) cannot be directly tested. However, the
mass diffusivity D„=A/)( is found to behave as
t'D with 0.66~ yDs 0.68,' in good agreement with
the valueyD=v+y„=0. 67 deduced from (2). On
the other hand, the "Kawasaki-Stokes" result'
D„=Rks T/g$ with R = (6II) ' has been already
shown to agree with experiment" but R = (5II) '
is probably also consistent with the data because
of the experimental errors, mainly in $.

On the contrary, for pure fluids the exponents
describing the thermal diffusivity is found to have
apparent values ranging from 0.73 to 0.78,"but
in this case corrections to the leading behavior
cannot be neglected. ' On the other hand, near the
critical point, viscosity and thermal conductivity
data are not available together, except for carbon
dioxide. However, the data"" do not allow the
interesting parameters to be obtained with a suf-
ficient accuracy. Therefore I assume that 7t

= q, (T„N,)t '& with y „=0.04 for the value t)
=345.9 ILP at t =1.15X10 '." This gives I),(T„
N, ) = 265 ILP. Furthermore, according to the
scaling law (2) we assume that y~ = 0.57 and fit
expression (1), with A; = 0 as a first approxima-
tion, to the data corresponding to the two nearer
critical isotherms. " Thus I obtain A, (T„N,)
= 0.0904 + 0.0008 and As = 1.04 + 0.03 [I + (0.9
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+ 0.3)t] in units of 10 ~ cal/cm s K. With these
results and the values quoted in Ref. 2 for the
other quantities, expression (3) leads to R
= (5.1w) ', in agreement with the theoretical val-
ue. Furthermore, the result for A~ is very near
the value A"~(T, N, ) =1.042(1+0.58t)10 ' cal/cm
s K inferred from the Sengers-Keyes Ansatz. "

To conclude, this analysis solves the main re-
maining difficulties concerning the interpretation
of experimental data for the critical-transport
properties of fluids, in particular for shear vis-
cosity. It also shows that, at least for pure
fluids, the nonanalytic corrections expected from
theory cannot be always neglected.

I acknowledge helpful discussions with I . Peliti
and E. Brezin.
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An analysis is presented of data on sound absorption, specific heat, and ionic conduc-
tivity that demonstrates the existence, in the superionic conductor HbAg4I5, of internal
degrees of freedom associated with the diffusing silver ions which may be characterized
thermodynamically by a relaxing specific heat. lt is pointed out that this simple analysis
should provide useful information on ionic diffusive modes in other superionic conductors,
particularly in regard to their coupling to lattice modes.

In the past few years, the class of solid electro-
lytes known as suPerionic conductors has attract-
ed a great deal of interest. ' What distinguishes
superionic conductors from ordinary solid elec-
trolytes is the fact that whereas the latter exhibit
ionic eonductivities of the order of 10 '/0 ~ cm or
less, superionie conductors have ionic conduetiv-
ities comparable to those typical of liquid electro-
lytes (0.5/0 cm). This property makes superion-
ic conductors likely candidates for potential use
in solid-state batteries. One of the most thorough-

ly studied superionic conductors is RbAg, l, (rubid-
ium tetrasilver pentaiodide), which at 20'C has
an ionic conductivity of 0.21/0 cm, ' the charge
carriers being the silver ions. ' Experimental
work has also yielded information on its (cubic)
crystallographie structure, ' specific heat, '" dif-
fusion coefficient' and Hall effect' of the silver
ions, elastic constants, ' thermal expansion coef-
ficient, ' ultrasonic attenuation (15-45 MHz) ""
and optical birefringence. " In the present Letter,
the simultaneous analysis of data on ultrasound
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