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Analytic results are obtained for generation of solitons and their effects on density-pro-
file modifications at critical density for resonance absorption process.

For a laser beam of frequency ~, obliquely in-
cident onto a nonuniform plasma slab with polari-
zation in the plane of incidence, there is a com-
ponent of the electric field along the density gra-
dient driving the density oscillation. Because of
Budden tunneling, the residual electric field be-
yond the cutoff can drive the plasma wave at res-
onance where &~(x') =&so. This transformation of
the electromagnetic wave into electrostatic waves
which are subsequently absorbed by the plasma
particles constitutes an important absorption
mechanism of the laser radiation. '

In the usual linear theory, a fixed density pro-
file is assumed and the modification of the densi-
ty profile by the large-amplitude plasma wave
generated at resonance is neglected. ' In reality,
even for a relatively weak pump wave, the res-
onantly driven plasma wave can significantly mod-
ify the density. profile near the critical density
region by the ponderomotive force.' ' Because
of the localized structure of the field near the
resonance, the ponderomotive pressure tends to

drive the plasma out of the resonance region,
thus depleting the local plasma density, forming
a caviton (soliton). The successive generation of
solitons and their subsequent downward motion
along the density gradient results in a quasista-
tionary density step with steep density gradient. "'
The formation of this sharp density step can sta-
bilize many parametric processes, "affecting
the absorption and scattering of laser light

In this Letter, we present an analytic theory of
these nonlinear processes of soliton generations
and profile modifications at the resonance.
Threshold conditions for Ã-soliton formation are
obtained. A closely related problem is the satu-
ration of the linearly transformed wave. In the
linear theory, the thermal convection of the plas-
ma wave and its subsequent Landau damping pro-
vides the saturation after a time t, = (I./&D)' 'co~, ',
where I is the initial (unmodified) density scale
length and Ao = (T)one')' ' is the Debye length.
Because the soliton generation involves ion mo-
tion which takes place after several ion plasma
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periods [v~z '= (M/4&me')' '], it occurs after the
convective saturation if (L/&D)' '& (M/m)' '

(&z,;t,
& 1) and the saturated wave can thus be used as
the initial condition for determining ho% may soli-
tons can be generated as well as the final scale
length of the modified density profile. On the
other hand, for (L/A. D)' ') (M/m)' ', solitons are
generated during the growth phase and contribute
dominantly to the saturation process by detuning
the resonance. Excluded from the present dis-
cussion is the wave breaking as a nonlinear satu-
ration process which occurs in a timeseale t&
= [(L/&D)4(&nT)' '/E, ]' '~z„', where ~z„ is the
electron plasma frequency, E,= E,y(s) /(2&kg)' ',
with E, and k„respectively, the amplitude and
wave number of the laser light; y(s) will be de-
fined after Eq. (1). Thus the present analysis is
valid for relatively long initial scale length and
not-so-strong pump wave so that t~ » the smaller
of t, and &~~ ', which is, for t, &~& (1,

(!E,!'/16zznT)A. ,/XD & (L/Xo)' ',
where A., is the laser wavelength, easily satisfied
for an expanding plasma with unmodified scale
length of -100 pm. Extensive numerical simula-
tions have been performed in the opposite limit,
complementing the present analytic work."

Consider an electromagentic wave E&„=E,
&& exp(ik»y+iko„x —i&up) + c.c., obliquely incident
onto a plasma slab with increasing density n

=n, (1 +x/L). The nonlinear equation for the slow-
ly varying amplitude E(x, t) of the driven Langmuir
wave hg, t) =E(x,t) exp(-icu~t+ik»y)+c c .in. a
nonuniform plasma near the critical density (x =0)
is written in dimensionkess form as

.BE 8 g jI'
i —+ +2 !E!'—ax+—E =E 8(t).
Bt &x 2 d

Here E„=E,y (s) /(2 zzk,L)" '; y (s) is the usual
resonance function with s = (k,L)' ' sinP and P
=tan 'k»/ko„; a=1/2I; t =r-~z, y/Sk, v, ' is the
shifted time variable; ~ the collisional damping
rate; and 9(t) is the Heaviside step function. The
dimensionless variables are expressed in units
of ~z„' for time, A. D for spatial length, and 4(~nT)' '
for E.

Equation (1) contains the nonlinear effect of the
ponderomotive force important for soliton genera-
tion and density-profile modification. Strictly
speaking the nonlinear term is present only after
several ion plasma periods. Woithout the non-
linear term, Eq. (1) can be solved analytically

!
by Green's function technique after a variable
transformation. The solution is,

E(x, t) =iE J, exp[—'(4ia')(t' —t)'+ (2zax +I')(t' —t)]dt'.

Initially, i.e. , t «(Sx/2a)' ', the wave convection is not important and we have

E (x, t) =zE„(2zax + I') 'l1 —exp[- (2iax + I' )t)

=E„(ax —zr/2) sin[(ax —iF/2)t] exp[- (zax+ F/2)t],

(2)

(S)

(4)

which shows that the wave amplitude grows linearly in time and the width shrinks as t for lax-il /2
l«1. Asymptotically, for large time, i.e. , t» (Sx/2a)' ', a steady state is attained when the linear
growth is balanced by the convection:

Etr, t) =zE~J ds exp[ ~za's' —(2zax+I' )s]

= —zE zz(2a) 'Gi((2a) (2ax- zI'))+iAi((2a) '(2ax -iF)),
where Ai, Gi are the Airy functions. ' Thus near
x =0 the amplitude is saturated by convection
after a time t, - (Sd/2a)'i' - a 'i' at a level

E, =iE~&(a) z '[Gi(0) +iAi, (0)],

where d - n ' ' is the width of the main peak of
the Airy function. At large x, the wave number
k(x) = (2ax)' ' in the WKB approximation, and
Landau damping becomes important for kA. D= 0(1)
or ax = 1, beyond which the wave is heavily
damped.

For &u~, t, &1, or (m/M)' '(L/AD)' '«1, convec

! tive saturation takes place much before the ions
start to move by ponderomotive pressure. The
linear Eq. (1) then treats properly the saturation
until. several ion plasma periods after which the
nonlinear term in Eq. (1) begins to play a role.
We may therefore treat the nonlinear equation (1)
as an initial-value problem with the conveetively
saturated amplitude (4) as the initial wave ampli-
tude and ask how does the nonlinearity arising
from the ponderomotive force change this initial
amplitude after the ions have moved to establish
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the pressure equilibrium between thermal and
ponderomotive forces.

Because the saturated field level is much higher
than E„we may neglect E, in Eq. (1) as a first
approximation. Without the driving field, Eq. (1)
with the nonlinear term is exactly solvable by the
inverse scattering method to yield N-soliton solu-
tions. ' The particular one-soliton solution takes
the form of E =Ae'~, with

A =2q sech2q(x+2at' —4)t -xo),

y =2(g —at)x -4[3a't' -aft'+($' —g')t]+p„
(6)

where 4($ —at) = V, is the group velocity of the
soliton at time f with initial velocity 4$, and p,
is its initial phase. For a given initial ampli-
tude E(x,t =0), the contition for N-soliton forma-
tion is"

m(N+ ,') o-J~IE-IIdx&~(N ——.'). (7)

Substituting the convectively saturated amplitude
given by Eq. (5) into the condition of N-soliton
generation, Eq. (7), and remembering that Lan-
dau damping limits the wave 8, to x ~ I, we find
the following approximate condition for K-soliton
generation:

JIE.ldx =E.L =&E&/(2a)" & N&.

The physical significance of the N-soliton genera-
tion at resonance can be interpreted as follows':
If the threshold condition for N-soliton genera-
tion is exceeded for a given initial (unmodified)
density scale length and incident power, then a,

soliton will emerge from the resonance modifying
the density profile near the resonance while slow-
ly moves out of the resonance as it is accelerated
down the density gradient of the unperturbed pro-
file. A second soliton will emerge on its shoulder
where the local density is the new location of
critical density with the density scale length
there modified by the first soliton. The third
soliton will again appear on the shoulder of the
second soliton where the density profile is further
steepened by the second soliton and so on. This
process continues until the Nth soliton is genera-
ted and the density profile modified by it is so
steep that no more solitons can be generated.
Therefore, there will be N solitons present in
the final state, each emerging on the shoulder of
the previous one and further steepening the den-
sity profile. The final density scale length, L/,
can thus be obtained from Eq. (6) by setting (2a) '

=I.f and requiring no further soliton generation:

1 (y L )3/10 P 3/7

~f 3/5 3/1.0 Or ~f

rj = ~ sech cos[2(g —at)x, +y,],. ~E, ~(~-at)
2n

5 =(& af)i/n, - (12b)

This scaling of the density scale with incident
power P is consistent with the result of numeri-
cal simulations. " The soliton is unstable to the
transverse perturbation leading to the rippling
of the critical surface. The rippling of the sur-
face will broaden the range of incident angles of
laser light and therefore affect the rate of linear
resonance absorption.

We next consider the case of ~~;t, & 1, in which
the scale length is so long that the convective
saturation time is much longer than the ion plas-
mas period. In this case the soliton forms be-
fore the wave convects out and the saturation of
the linear growth is primarily due to the detuning
of the resonant frequency by the soliton. Initially
the wave amplitude grows according to Eq. (3) as
the convection is unimportant. As it grows in
amplitude, its width shrinks so that the integral
I = I „IEidx &E~/a is—independent of time. Com-
paring it with Eq. (7), we obtain a threshold driv-
ing field for N-soliton formation:

N + ~g & E~/a & N —g, (10)
or, in terms of incident power:

w (N + 2) & (PLA. O)' & 7r (N - 2). (11)
Below the one-soliton threshold, the linearly con-
verted wave evolves into a stationary Airy-like
pattern. Once the threshold is exceeded, then
solitons are produced. This threshold condition
appears to explain the numerical calculation' and
experimental observations' very well. On the
other hand, in order to see how the soliton grows
and saturates, we calculate the perturbations due
to the driving field E„ to the first order by vary-
ing the soliton parameters q and $ as functions of
time. For one-soliton soultions, we can write
E =Ae'~ withA =2@(t) sech'(t)[x-x, (t)] and y
=2[)(t) —at]x+y, . Substituting it into Eq. (1),
to first order inE„, we obtain

x, =4(( —af) and j, =4[g' —(& —at)'] (12a)
and from the two conservation laws,

i 8 J(E„*E-E„E*)dx=4afIEI) dx,

~ e,JE*Edx =E,J(E* E)dx, -
we obtain also
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sorbed by the plasma, we can calculate the ab-
sorption coefficient of the laser light due to di-
rect soliton generation for this case of ~~&t, &1:

0.5

0.4

absorbed powera=.
incident power

4rj N flE, I'dx ly (s)I'

]E,I2, t, lE, I'c (16)
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FIG. 1. Growth and saturation of solitons with F'z

~ Q/

subject to the initial conditions, q(0) = $(0) =x,(0)
=y, (0) =0. From Eq. (12), we observe two stages
of soliton growth. In the first stage& when the
cosine factor is essentially unity, the soliton
grows linearly in time with

rt =&(vE,t) sech8, $-nt/2,

p, = [&'E~' sech'8 —n']t'/3,

xo= —nt, 8 =v ($- nt)/ri=mn/E„,

(13)

where 0 is a small constant in this stage; we can
set it to be zero. The subsequent saturation and
damped relaxation oscillation stage commences
when the phase shift due to nonlinearity detunes
the soliton from the driving field as the argument
of the cosine factor goes to &/2. The growth of
the soliton then stops with g going to zero and
the phase locking (8 =0) is broken with 8 increas-
ing rapidly. The hyperbolic secant function then
limits the oscillation to an exponentially small
amplitude around the saturation level as shown
in Fig. 1. We can now estimate the saturation
parameters of the soliton. The saturation time
is found by setting 2($ —nt)x, +y, = t'[3~'E, '+2n']/
3=~/2, or

[(3/2+ )E
- 2]1/3 (14)

The saturated q and $ are then

q, =( n3' 1/)6' '/E, ' ', $, = ,'n[(3/2v)E ']' ', (—l5)

The solitons thus generated will then propagate
down the density gradient and be damped by in-
teracting with hot electrons. Since the energy
carried away by the solitons is eventually ab-

with maximum value about 30%, where we have
used the relation between the driving field and in-
cident field, also the threshold condition E„-N&n,
and kc =&~. We note that the absorption coeffici-
ent is indpendent of the temperature, the laser
power, wavelength, density scale length, etc.

In summary, we have treated analytically the
process of soliton generation and its subsequent
effects on density modification for resonance ab-
sorption in regions where wave breaking is un-

important. We obtained exact solutions of time
evolutions for both the linear and nonlinear wave
equations that govern the linearly converted plas-
ma wave. We found the amplitude of the wave
initally grows linearly in time and then saturates
either by convection or direct soliton formation.
In the latter case, the soliton saturates when
the nonlinear frequency detunes it from the driv-
ing field, while in the former case, the wave
growth is balanced by its convection out of the
resonance. Even in the case of convective satura-
tion, solitons emerge eventually from the satura-
ted wave amplitude if the N-soliton threshold con-
dition is satisfied. These solitons modify the den-
sity gradient length at critical density and yield
the scaling 1,&-1/P" consistent with the simula, -
tion results. " The interaction of the solitons with
electrons and the hot-electron acceleration will
be discussed in a forthcoming paper.
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An analysis of earlier data on the shear viscosity of pure and binary fluids leads to the
expected universal description of the critical transport properties.

It is customary to assume that any physical
property I' (E &0) of a system near a critical
point can be written as the sum of a critical partI'"" due to the critical behavior of the system
and a regular part I "~present in the absence of
criticality. ' Thus I""~ is a positive analytic func-
tion of both the temperature T and the other pa-
rameter N. This assumption has been used to
explain dynamic properties of critical systems
such as the thermal conductivity' and diffusivity'
of pure fluids and the shear viscosity of both pure
and binary fluids. '4 However, this partition does
not always give a convincing description of these
properties. " In particular the critical viscosity
g"" cannot scale as do the other critical proper-
ties. ' The purpose of this Letter is to show how
this apparent difficulty can be solved in agree-
ment with the current theoretical expectations.

First, renormalization-group theory predicts
that any anomalous kinetic coefficient K(T, N) can
be approximated in the form"

where the exponents yl, and +, are universal. The
leading amplitude E„ the amplitudes K, of the
nonanalytic corrections, and K~ the background
part of K are analytic functions of T and ¹ f, (x)
(with i = 0, 1.. . .) are functions of the scaling pa-
rameter x =t 8/~ n~, where t = (T —T,)/T „n= (N
-N, )N„and P is the exponent of the coexistence
curve ~n~ = B(-t)s. The functions f, (x) have uni-
versal asymptotic behaviors. In particular

lim f, (x) —= 1 and lim fo(x) ccx"&ts.

Secondly, in the particular case for the thermal
or mass conductivity A of pure or binary fluids
and for the shear viscosity g of both systems a
recent renormalization-group treatment of the
dynamics of critical fluids predicted that'

yz+yz =y- v with y„=0.04,

A,go=RkBT, )to)o
' with R = (5v)

where kB is the Boltzmann's constant, X =X,t "&

with y—- 1.24 is the static susceptibility of the or-
der parameter and $ = $, t & with v= 0.63 is the
correlation length.

Finally it is worth noticing that Ref. 7 can be
regarded as a more accurate statement of the
mode-coupling theory' in which the approxima-
tions y =2v and y„=—0 were made. Thus go—= q"~
in this theory. Since more precisely y„«yA it
could be expected that g, = g"~»g~ in a sizable
range of temperatures near T„'but A~=X"&. On
the other hand, the nonanalytic corrections are
also implicit in the mode-coupling theory where
they are generated by the regular coefficients. '

A careful analysis of the shear viscosity data
for critical fluids will provide a crucial test of
the above predictions. To this end I have select-
ed the numerical data reported in literature for
ethane and xenon, " and for the mixtures of iso-
butyric acid-water, ""2, 6 lutidine-water, "and
3-methylpentane-nitroethane. '4 I have estimat-
ed, following oxtoby, " the temperature ranges R
in which the viscosity data are not aff ected by
shear by more than I%%uo and I have neglected the
data which are not in B. R is given in Table I.

I have paid particular attention to the very care-
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