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culated I"f /I'„ratios. " Folding the excitation en-
ergy distribution into the survival probability, a
value of 10 "cm' is obtained, consistent with the
experimental limit mentioned above. Although a
similar estimate for Cf isotopes reproduces the
experimental order of magnitude of -10 "cm', "
the number deduced may only represent an upper
limit because of the influence of angular momen-
tum and deformation on the survival probability.
It nevertheless appears not to be totally discour-
aging.

In summary, nuclear reactions of U+U are
dominated by fission of U-like fragments. The
analysis of the surviving part of the binary frag-
mentation seems to indicate smaller energy dis-
sipation for the same amount of particle diffusion
compared to other systems —a feature highly
desirable for the synthesis of heavy elements.

The authors want to express their gratitude to
the staff of the Unilac for providing the extreme-
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It is argued that the negative helium ion exists in magnetic fields. Si:milarly, nontrap-
ping isoelectronic impurities in semiconductors trap with magnetic fields. Crude esti-
mates of binding energies are given.

It is well known that a shallow square well will
bind in one dimension but not in three. Here we
wish to point out an elementary but striking con-
sequence of this fact which affects the physics of
atoms in magnetic fields. The new states which
we discuss for He and other ions might make
chemistry in strong magnetic fields quite differ-
ent from conventional chemistry and should be
considered in study of stars with large magnetic
fields and large concentrations of helium. These
states will also have analogs in isoelectronic im-
purities in solids.

Because of a combination of polarization effects
and imperfect shielding, the interaction between
a neutral atom and an extra electron is attractive,
but as this is the analog of the three-dimensional
well, a negative ion will form only if the attrac-
tion is sufficiently strong. For example, the com-

mon belief is' that noble gases do not have stable
negative ions."

As distinct from this, constant magnetic fields
confine electrons in two dimensions in cyclotron
orbits so that the net attractive force will pro-
duce a situation analogous to the one-dimensional
well, i.e., binding of the electron in the third di-
mension as well as "tying down" the center of the
cyclotron orbit.

In fact, it is not very hard to show' that if V is,
for every e) 0, the sum of an I-' function and a
function bounded in absolute value by e, a suffi-
cient condition for the Hamiltonian'

H= (2m) '(p —A)'+ V(r), with A = —,'B&&r,

to have bound states is that f V(r) d'r& 0 or that
outside some ball V(r)&0. [To see this, use a
trial wave function of the form y~(x, y)f(z), for
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A ~ 0, where I., cp~=kcp„and f(P„—A„) +(P,
—A„)'J rp ~

= Bcp ~. This produces an effective po-
tential W~(z) = (cp ~, V(x, y, z)rp~) for a one-dimen-
sional problem which has a bound state if JW~dz
&0.' Since yz ——(const)(x+iy) e e~ ~, where p-=(x' +y') '~', if V& 0 outside some ball, JW~dz & 0
for large A. . Similarly, for suitable positive con-
stants p&, Jp~p&W„dz = JVd'y so that if JVd'r&0,
then for some X, JW~dz&0. ] From this, it is
quite easy to prove rigorously, for example, that
H has an infinity of bound states in a magnetic
field' even though it has only one in zero field. '
A rigorous proof that He has a stable bound
state turns out to be somewhat involved because
of Fermi statistics but can be carried out for
small B (U.nfortunately, a technicality pre-
vents us from proving this for arbitrarily large
B )8

As we will see below, the binding energies of
these new states are quite small so that we would
expect them to be most easily seen experimental-
ly in cases where the only bound states of the sys-
tem are those produced by the magnetic field act-
ing in concert with the potential. As well as in
atoms with negative electron affinities, this situa-
tion will occur in some kinds of isoelectronic im-
purities' in semiconductors which may or may
not bind depending on the particular case.'"
Typical nonbinding examples are Si:C and Si:Ge,
which will trap in the presence of a magnetic
field. The phenomena that we discuss should be
distinguished from condensation of impurity
states" by the B field. For B small and J ~

V~d'r
&~, one can estimate" the binding energy E(B)
-m[f V(r)d'r] B', so that very roughly E(B)
-(10 "B') K (B in gauss). For noble gases E(B)-mn'B' with n the polarizability, m the electron
mass in a.u.

Q Jj V~d r =~, then the B' behavior will be re-
placed by an enhanced behavior. For example,
if V(x)-r ' for large y (but V not strong enough
to bind when B=0), then E(B)-(BlnB)' for small
B. It has been suggested" that a deformation po-
tential due to the strain caused by an impurity
center may have the general features of the z '
example just discussed. Thus, isoelectronic im-
purities will have a B' threshold behavior if the
mechanism is purely "one-site" as suggested by
Hopfield, Dean, and Thomas, " and will have a
(BlnB)' behavior if it is an attractive long-range
distortion field.

In any case, for a one-electron Hamiltonian,
one has the rigorous bound' '"

E(B)& B/2m.

For m =1, the bound is of the order of (10 'B)'K
if B is in gauss. This is small, but not impossi-
ble to observe.
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to the field, and p the magnitude of the orthogonal co-
ordinate. We take for P the fixed state const. &B'
x e 8~'/ and vary &. One then obtains the variational
problem for a one-dimensional potential +'(z) const.
xB JV(p, rp, z)e +~ 2pdpdrp so that small B corre-
sponds to weak W where the binding energy (see B. Si-
mon, Ann. Phys. (N.Y.) 97, 279 (1976)] is (z f&(z) dz1'.

~J. J. Hopfield, P. J. Dean, and D. G. Thomas, Phys.
Rev. 158, 748-755 (1967).

The inequality (2) comes from the following: The
lowest state for which the electron can become unbound
has an energy B/2m due to the zero-point energy of
the Landau oscillator. On the other hand, the energy

of the ground state must go up in a magnetic field tsee
B. Simon, Phys. Hev. Lett. 36, 1083-1084 (1976)] and
we are supposing it to be zero if B =0.

V(r) = —n /(P +r ), with 0 (2m' & 1/4 (which im-
plies no bound state if &=0), one finds by an explicit
variational computation that

IimE(B)/B ) z o!2m
Sc 0

which can be made arbitrarily close to (~3/92) (zm)
= {0.969)(2m). This comes close to saturating the
bound (2).
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The two-photon transition rate for hydrogen is evaluated with the E x and the X p in-
teractions including the continuum. We find that the Z ~ x interaction approaches the final
result with a small number of intermediate states and consequently is the one to be used
in any approximate calculation. Numerical values of the two-photon absorption coeffi-
cient as a function of frequency are given and the resonance enhancement is exhibited.

The problem of the choice of the gauge in multi-
photon transitions has been discussed by a num-
ber of authors" in connection with the proper
choice of the unperturbed wave functions required
to insure gauge invariance. We have shown' that,
at least, in the dipole approximation the two ex-
pressions E x and A ~ p for the photon-electron in-
teraction give the same transition probability to
all orders with the same unperturbed wave func-
tions, provided that the complete set of interme-
diate states is used. In an exact calculation it is
thus irrelevant to use one or the other form of
the interaction. However, in general only a limit-
ed number of intermediate states can be taken in-
to account and the problem of which interaction
gives more reliable results in this approximation
is essential.

In order to answer this question we have con-
sidered a case which can be solved exactly, the
two-photon 1s-2s transition in hydrogen. We pre-
sent the exact results for the transition rate and
absorption coefficient in the two gauges and we
compare the convergence over all intermediate
states including the continuum. The result of our
analysis indicates that the E ~ x interaction is the

V & = —eE,e, ~ r cose, t —eE,e, ~ r cost@,t, (la)

e, ~ p 'p
V =eE, ' sin&, t +eE2 sin&, t,

1 2
(lb)

where E, and E, are the electric fields of the in-
cident electromagnetic waves traveling in the y
direction with polarization vectors e, and e, and
frequencies , and , .

The two-photon transition probability per unit
time and per atom between the 1s and 2s states
reads

2 4+ 4

(2a)

(2b)

in the gauges J, and J, respectively. In (2), a,
denotes the Bohr radius; 4=3.29&& 10'

one to be used in any approximate calculation.
The interaction of radiation with the electron in

the two gauges, denoted by J, and 4, takes the
following forms in mks units:
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