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Exact Results for the Dynamics of the Classical Nearest-Neighbor Heisenberg Chain Near T = 0
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%e present rigorous perturbation results for the dynamics of the classical nearest-
neighbor Heisenberg chain, using the temperature as a small parameter. The lifetime
and the frequency shift of the spin waves are determined. For the antiferromagnet we
find that there is a region of wave vectors close to the zone boundary where the dynami-
cal scaling fails and we argue that this is a general property of the Heisenberg chain
close to T= 0.

We have calculated a rigorous perturbative expression for the spin-relaxation function of the classi-
cal, nearest-neighbor Heisenberg chain, using the temperature as the small parameter. The solution
clarifies the physical origin of the damping at finite temperatures and the role that the constraint on
the length of each spin, 5,. S, = S, plays in the dynamics. Rigorous results for the spin-wave damping
and the frequency shift is given to lowest order in the temperautre. We find the dynamical scaling to
hold near the zone center for the antiferromagnet and also for the ferromagnet within the region of val-
idity of our calculations. At t;he zone edge we find for the antiferromagnet a region of wave vectors
and temperatures where the dynamical scaling actually fails. This is characteristic of the Heisen-
berg chain and is not due to the perturbative treatment. The details of our derivation will be presented
elsewhere and here we give only the basic steps and discuss the results.

As suggested in a comment by Mikeska, ' we write the equation of motion for the Fourier components
of the spin variables in the form

g 2$ 0.'

r(q„q„q,) 5(q - q, —q, —q,)s, "(s, s, ).
Qgy o o oyQ3

This follows from the Hamiltonian

e=-Z&,-S, S,„,
and using the spin commutation rules, interpreted as Poisson brackets here. We have

(3)
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and J,'= 2Jcos(qa), where Jis the nearest-neigh-
bor exchange constant and a is the nuclear lattice
parameter. Using the exactly known static cor-
relations, we find that

((Ajar, S,.j) )= (n/(a) for /(ir, . —r,. i«1,

where 5/5, R, j=S,. S,. -(S,. ~ S,.) represents the
fluctuation from the equilibrium average value
and na = Ir, —r,. l is the distance between the two
spins. The coherence length K

' = JS'a/KT, and
S is the length of each spin. For n=0, Eq. (4)
expresses the constraint S,. ~ S,. =S' and for n)0 it
shows that the fluctuation 5f S, ~ S,j is small when
the separation of the spins is much less than the
coherence length. Since the coefficient I' re-
stricts the distance between sites appearing in

(1) to at most two lattice spacings, the fluctua-
tions will, on the average, be small for low tem-
peratures. Neglecting these one obtains sharp
spin waves with a frequency

&u, rz =Q, I'(q, q', —q')(S, 'S, .),
which for T = 0 gives the correct spin-wave fre-
quencies, w, o

= 4JS sin2(qa/2) (ferromagnet) and

(d, o
= 2 IJ ISsin(qa) (antiferromagnet). The damp-

ing at finite temperatures is due to fluctuations
in S, "()(S„S„jand we find that the fluctuations
in 5(5, B,,j are the important ones at low tem-

peratures. In the dynamical spherical model,
where 0,. S, can fluctuate subject only to the con-
straint N 'QS,. ~ S,. = S~, there are no well-defined
spin waves for T-O, ' 4 and we therefore conclude
that the constraint is playing a crucial role here.

To obtain the damping systematically we apply
the Zwanzig-Mori projection-operator technique
and write the Laplace transform of the spin-re-
laxation function in the form

Z(q, z) = f dt e"'(S,(t).R,(0))
= t(S, S,)(z —~,'[z+y, (z)J-'j-', (6)

y, (z) = JS[Kay, ,(z) + (/(a)'y„(z) +. . .J. (7)

It is possible to calculate y, , (z) exactly. y, (z) is
determined by the correlation function (S, "(t)
x()fS, (t) S„(t)jS„,"(){S, ~ ~ S, .j). T lowest order
in 7.', the time dependence of 8, , plays no role
and one may evaluate the time dependence of
()(S, (t) S, (t)j from an equation of motion valid
at T=O. y„(z), for both ferromagnet and anti-
ferromagnet can be represented as (z' —.u; ')z '

q, o

&&y, ,'(z), where for the ferromagnet

where &u,
' is the second moment of Z(q, z). The

function y, (z) can be interpreted as the frequency-
and wave-vector —dependent "decay rate" for the
spin current and can be expanded in a power se-
ries in the temperature if we neglect terms of
order exp(- 2JS'/KT), i.e. ,

y, , '(z) = 2(J/KT)2&, o
—Q sin'(q'a) sin (q "a)

,0

q/2-a', 0 a/2+@ ',0) -I ( ~Sa/2+a ' a/2 -q'j ~ gq/2+@") "(q/2 -q")j)

A similar expression holds for the antiferromagnet. As is evident from (8), the damping mechanism
is the resonant absorption by pairs of spin waves. Equation (8) and its analog for the antiferromagnet
reduce the problem to the evaluation of certain integrals containing the static correlation functions.
These are readily computed' and the integrations performed by contour integrations, The spectral
function is now obtained from (6) with the replacement of y, (z) by (KT/S)y„(z) and use of

w, = (2JS) /(a[1 —cos(qa)J [1+y'-2y cos(qa)]y(1 —y ) ',

where y = + (1 —/(a), when exponentially small terms are neglected. The plus and minus signs refer to
the ferromagnetic and antiferromagnetic case, respectively. The spectral function obtained in this way
will have all moments correct to first order in Ka, i.e. , if &u,

2"= (cu„')"+K',"+(i((/(a)'} then A, " will be
exact. In particular, the results agree with those of Tomita and Mashiyama for the moments up to the
sixth when these are expanded to first order in ~a.

For the ferromagnet, terms in (7) that are of higher order in /(, but lower order in q, dominate y, (z)
for q&z, and our results are therefore restricted to q)w. For the antiferromagnet the lowest-order
term in y is also lowest order in q and g*= p -q and there is no restriction. The final results are pre-
sented below.

(a) For the fe rromagnet (J & 0) and q & /(,

y, ,(u) = —2sin(qa/2)[& —(g —1)" + (&' —1) " cos (qa/2) J, (10)

where g= m[4JSsin(qa/2)J '. For &(1, (&' —1) ' ' and (&' —1) "2 go over to t(1 —&2)"2 and —(1 —g') "2,
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respectively. We obtain for T-0 sharp, essentially Lorentzian spectral lines around

&@=4J'Ssin (qa/2)! 1 —KT(2JS ) 'J

for all q values. However, the tail of the spectral function always drops to zero when u&4 IJISsin(qa/
2), implying that all higher-order moments do exist. The half-width of the spin resonance is, except
near q= z/a,

b., = KT(JS') 'JS sin(qa). (12)

Close to q= m/a, the linewidth is proportional to T"'. These results are quite different from what has
been found before in approximate treatments. ' For small wave vectors we can introduce the scaled
variables q= q/~ and co= &u/ IJISa'~' and write

ReZ(q, &u)/(S, S ) = (JSv'a') '2q'(1+ q ') [ &u' —q'(1+ q') + (2&uq)'J '.
The solution satisfies the dynamical-scaling hypothesis with a characteristic exponent z = 2. Note that
the scaling property is violated when g becomes of order unity, which implies &a-2q/~a or alternative-
ly a-2JSqa. 'thus, the scaling is violated long before values of e of order JS are reached.

(b) For the antiferromagnet (J&0),

y„(&u) = - 2sin(qa/2)! g, —(&,2-1)"2J—2cos'(qa/2)[f~' —1] '~', (14)

where g, = &u/4 IJISsin(qa/2) and f2= &u/4 IJIScos(qa/2). As before we should replace ((2 —1)"~ and
(& —1) "~ by i(1 —&2)"2 and —i(1 —

& ) '~', respectively, for «1. We have to consider separately q
~0 and m/a; elsewhere we have an essentially Lorentzian spectral-line shape around the resonance fre-
quency

m= 2 IJISsin(qa) [1 —KZ(2JS ) 'J,

with the width,

b, = KT(JS ) 'JS,

(15)

being independent of q. Again, for small values of qa we may introduce scaled variables q= q/~, q*
=q*/v, and 2= &u/2 IJISav. We have then

ReZ(q, ~)/(S ~ S,) = (2!J!S~a) 'q'I Cu' —q')'+ &u'J ', (17)

except far out in the wings. This gives for q'» —', sharp resonances at ~= +(q' ——,')'". For q' «-,' we
obtain essentially a Lorentzian line shape around w= 0 and for the corresponding spin-diffusion con-
stant we have D= 2 IJISa/v. The situation is more complicated close to qa= v. There the term (g,'
—1) '"= (co'/q*' —1) '" diverges and the last term in (14) can dominate. Near q*=0 we have

Z(q, (u)/(S, S,)= i(2!J!Sea) '((u —(1+q*')!(a+i(1+ —', K'a'q*'(q*' —~') '")J 'j '

Except at q =0, the solution does not satisfy the
dynamical-scaling hypothesis, because of the sin-
gular term in (18).9 This is not an artifact of the
perturbation treatment and would not be eliminat-
ed by higher-order terms, as will be argued be-
low. If we denote by Kay, (u) the difference I y, (w)
—Kay„(u)], then y,(cu) is a function whose mo-
ments are all of order va or higher. Both y, and

y„obey the Kramers-Kronig relations, and
hence so does y. From the representation of the
moments of y as integrals over the imaginary
part, y, "(&u), it follows that y, "(v) can be of order
unity only over an interval that vanishes as KQ,

and must be of order ~a in any interval of fixed
length. But the singular term in (18) is of order
unity over an interval E&u =

I JI S(q*a)'(128) which

! is independent of za. Hence for sufficiently small
va, the higher-order terms cannot cancel the sin-
gularity. There is a region in the q*-~ plane, de-
termined by 1»q*a» (va)'", where the dynamic-
al scaling certainly fail.s. Ultimately, the break-
down of the scaling is due to the detailed effect ot
the constraint on S, S,-, since the one-dimension-
al dynamical spherical model satisfies the scal-
ing hypothesis.

The existance of singularities in the higher-or-
der terms of y, (~) at +=0 could invalidate the re
suits for the width and the line shape at q&K and
q* &v. We have not been able to rule this out on
mathematical or physical grounds. However, if
we assume that dynamical scaling holds near the
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FIG. 1. Comparison of numerical calculations of
Windsor and Locke-Wheaton (Ref. 10) (dots) with theo-
retical result (solid line). The discrepancies are with-
in the statistical error of the numerical calculations.

q is in units of 7t/g. Temperature and time are in such
units that 8= 1.

zone center and that the spectrum for q«~ is rig-
orously diffusive, then the diffusion constant we
have obtained can be proven to be exact. In Fig.
I we show the comparison with the computer
simulations of Windsor and Locke-Wheaton
(WLW)'0 for the antiferromagnet at KT/JSs = 0.3.
The differences that exist are within the statisti-
cal uncertainty of their numerical calculations.
This remains true also for the calculations of
Blume, Vineyard, and Watson (BVW)" at q= m/a,

which are available up to JSt = 7. The solution
for the ferromagnet and the antiferromagnet at
q= z/2a are identical, and the BVW data show
clearly this equivalence. The comparison with
WLW at lower temperatures give the same good
agreement. Any signularities in the higher-or-
der terms must have very small strength. If
ly (&u) —JSKay, q((u) I/(~a)' is bounded, independent

of Ka, then the spectral function is asymptotical-
ly exact in the limit T-O.

For not-too-low temperatures, we find that the
line shapes are far from Lorentzian, falling off
more rapidly on the high-frequency side, and this
affects significantly the evaluation of the width at
half-maximum. Detalied comparisons with ex-
perimental and molecular-dynamics data will be
presented elsewhere. "
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