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The energy gap in one-dimensional Fermi systems with weak attractive interaction is
expressed in terms of the parameters of the Hamiltonian and the electron density. The
models of Hubbard and phonon-mediated interactions are studied in detail. The result
for the Hubbard model is compared with numerical calculations.

As is well known, the energy spectrum of Fermi systems with attractive interaction has a gap. The
purpose of this work is to derive an expression for the magnitude of the gap in a weakly interacting on@-
dimensional system. We obtain results for two systems: the Hubbard model and electron-phonon sys-
tem.

The Hubbard Hamiltonian,

II= —TQ(a,,ga;+„+a,,fa; „)+Uga;yea, &ta;~a;~,

describes electrons on a lattice with nearest-
neighbor hopping and interacting only when they
are in one cell.

In the weak-coupling limit I U/Tl «I, U/T «,
our result for the energy gap is

6 = 8(2/7t)'" Tsin'(7'� /2) v g e '", (2)

where p is the average number of electrons per
cell, the dimensionless coupling constant g is de-
fined as

g= U/vn,

and the Fermi velocity v = 2Tsin(wp/2).
The dependence of b, on the coupling constant g

can be obtained from the renormalization-group
(RG) equations. ' ' However, for the determina-
tion of the density-dependent factor in (2) it is
necessary to know the boundary conditions for the
integration of the RG equations.

In the RQ method one integrates over those de-
grees of freedom which are characterized by
wave vectors separated from the Fermi points
by distances larger than some value k. The wave
vector k is arbitrary but it is assumed that k

«kF, the Fermi momentum, so that the electron-
ic spectrum is well approximated by a linear
function of momentum. As a result one obtains
an effective Hamiltonian which has the form

'&(bktbk-Cktok)' —
~& ~(&i'&. -&s-& )!g4i~ ~ »CD~k. C~.+gs&k;tC» ~ «k "~~.

[P )
&k kgksks»4

The effective coupling constants depend on k and

g, obeys the following RG equation

hagi/d& gy + sgz +f(gz)~ (4)

where the first two terms were calculated by per-
turbation theory' and the function f(g, ) is an un-
known remainder about which we only need to

! know that for small g, it is of order (g, ).' We as-
sume that the function f depends only on g, alone.
This is consistent with the theories based on the
bosonization of fermions in which the Hamiltoni-
an splits into two commuting parts, one of which
contains only g, . Equation (4) is valid when the

1025



VOLUME 39, NUMBER 16 PHYSICAL REVIEW LETTERS 17 OcTQBER 1977

following two conditions are satisfied: k «kF and

kv»~.
Perturbation theory allows the calculation of the

effective coupling constants g,. for the values of
k such that (a) (b) (c)

g ln(k F/k) ((1. (5)

g, (k) =g -g'L(k) (6)

where

L(k) = —ink+ in[2 sin(pp/2) J.

To find the values of g,. in this region to second
order we evaluate the diagrams in Fig. 1. For
the Hubbard model, the diagram (f) is indepen-
dent of energy and momentum and gives an unim-
portant shift of the chemical potential. The dia-
gram (e) is equal to zero. The diagrams (b), (c),
and (d) cancel. From diagram (a) we obtain FIG. 1. Second-order diagrams for the vertex part

and self-energy. The signs + and —on the lines stand
for external momenta +kF and —kq. External fre-
quencies in the vertex part are zero relative to the
Fermi level. In the self-energy graph the external
frequency is & «Q) p.

For sma. ll g, region of wave vectors satisfying (5) overlaps with the region in which (4) is valid. There-
fore (6) can be used as a boundary condition for the RG equation (4). The integral of this equation is

1 1 1 g
g g, (k) 2 g, (k)

si(u) 1 i
g+ 2g'+f-(g)

The integrand in the last term of (8) is nonsingu-
lar in the limit g-0, and to the required accuracy
the lower bound can be replaced by zero.

In the region of small wave vectors k, where

g, (k) -1, we cannot evaluate the integral in (8)
since we do not know the function f in this region.
However, the right-hand side of (8) is universal
and does not depend on the details of the spectrum,
in particular on the density of electrons.

We know from the work of Lieb and Wu' and
Ovchinnikov' that the one-particle spectrum con-
tains a gap A. For k (6/v Eq. (4) must be modi-
fied. We must add to its right-hand side a func-
tion y(b/kv). Since the presence of b. affects
only an exponentially small region around the
Fermi points, the function y is independent of p.
Thus for vk «6 in the left-hand side of (8) L(k)
must be replaced by L(b, /v) and on the right-hand
side to one unknown constant we add another un-
known constant. As a result (8) takes the form

there exist an exact analytical solution'"

(y2 1)l/2

7/g, sinh(y/g)

TWg e '"(1+ —+ )
8&2 &g

47/ 8

Comparing (9) with (10) we obtain the value of C:

C —]n(~l/2/23/2)

Substituting this value of C into (9) we obtain the
result (2). We note that in order to obtain the
density dependence of the correction terms of
relative order g we must evaluate the diagrams
of perturbation theory in the third order.

It is interesting to compare formula (2) with
the numerical calculation of Krivnov and Ovchin-
nikov' for the case of low densities, p «1. They
wrote the following expression for the gap:

6 = 2Tp2lr(2/e)'/2exp(ll2/20)Wg exp(- 1/g),

L(A/v) = C+g ' ——,'lng, (9) where a, was determined numerically: ~= 0.11.
Formula (2) gives for a the value

where C is a numerical constant which cannot be
determined by our methods. However, for p = 1

lnp+ 1
7T'

(12)
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in good agreement with the numerical result.
Now we turn to the case of electron-phonon in-

teraction. The RG equations (4) are the same'
but the boundary conditions are specific for each
model. In this case we have to evaluate the dia-
grams in Fig. 1 again, substituting for the wavy
lines the phonon Green's functions multiplied by
the square of the coupling constant. Since pho-
non frequencies are much smaller than electron-
ic energies vkF only phonons of wave vectors 2kF
and 0 are essential. Effective interaction medi-
ated by these phonons is denoted by g and go, re-
spectively. Evaluating the diagrams we find that
the boundary condition has again the form (6) but
the function I.(k) is replaced by a different func-
tion~

L „(k)= —ink+ in[ 2tg(wp/2J —0.5.

Equation (9) is still valid with the substitution L
—L „. The energy gap is given as

P
'

2/
b „=8(2/we)"'T ' W e '" (l4)

This result is correct if the density p is not too
close to 1: T(1-p)»&u„where &up is the fre-
quency of phonons with momentum 2kF.

For nearly half-filled band, i.e., T(1 —p) «&up,
it is necessary to include umklapp processes in
diagrams (b) and (c). These contributions are
equal to In[2mT(1- p)/rap]. For p- 1 this logarith-
mic singularity cancels the singularity in the sec-
ond term of (13). For the gap in this case we get

b, „(p=1)=32(2/se)"2(T'/vp)Wg e '". (15)

Equations (14) and (15) were derived under the
assumption that the condition g InkFv/~p «1 is
satisfied. This condition is, however, not essen-
tial. If it is not satisfied, in the expressions (14)
and (15) for the gap it is only necessary to make
the substitution in the factor vg —vg, where g
=g/(I —gin(k„v/up]. It must still be g «1 so that

+ (( (do.

In (14) and (15) the preexponential factors are
much larger, than ~0. This is caused by the soft-
ening of 2kF mode and the related enhancement of
the electron-phonon coupling.

The method of this Letter is not limited to the
concrete systems we studied. It can be applied
to a wide class of model Hamiltonians with weak
coupling. The parameters of the Hamiltonians
must be determined either experimentally or by
quantum-che mical calculations.
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The contributions of individual diagrams in L,
&&

are
as follows: Lf ——(g+gp)/2gI Le= —gp/g& Lz+L +L&=
gp/2g ~
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