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nonlinear event occurs. The slopes of the dashed
lines drawn through the data are again exactly in-
versely proportional to the square of the H, field.
There is a slight dependence on the H, field of the
frequency at which the large jumps occur. The
larger II„ the higher the frequency at which the
jump occurs.

The role that the gradient in magnetic field
plays in these nonlinear phenomena cannot be un-
ambiguously determined from the measurements
presented here. However, an estimate of the im-
portance of the gradient field may be made by
comparing the experiments reported here with
those of Ref. 1 in which the gradient was nearly
100 times smaller. Assuming that the nonlinear
events depend primarily upon the magnitude of
AMs/Ma as in the ferromagnetic resonance case,
then the two experiments can be compared by us-
ing the standard relationship" EMs/Ms =y'Il, '
x T,T,. I find, using the value for T, and T, ap-
propriate for the two examples of Ref. 1 in 623
Oe at a reduced temperature T/T, =0.60, that no
nonlinear phenomena were observed for hM s/Me
~ 5x 10 ' while for hM a/M a ~ 2x 10 ' the first non-
linear event was observed. In the present work,
at the lowest temperature and highest field em-
ployed, the onset of nonlinear phenomena began
at hM a/Mn = l. lx 10 '. Although this comparison
is based on only two events, it does suggest that

the only major effect of the gradient field is to
change the values of T, and T, and it does not
play a dominant role in the physics of these in-
teresting and unexplained nonlinear phenomena.
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We show rigorously that for dilute classical systems with finite-range interactions the
pair-correlation function has the form predicted by Ornstein and Zernike.

The Ornstein-Zernike theory of pair-correla-
tion functions is a cornerstone, albeit a heuristic
one, in discussion of fluids and lattice gases out-
side the critical region. " It predicts that the
truncated pair-correlation function for a fluid
u(r, p) should behave asymptotically as

u(r, p)=&exp( &,irl)cosh-2iri/Iri" "',
where A, k„and k, are functions of density and
temperature and d is the dimensionality. In this
Letter we establish the theory rigorously both
for continuum systems with finite-range poten-
tials and for lattice systems under the same con-

ditions, essentially for low densities and high
temperatures. The latter extends results obtained
by transfer-matrix techniques in this region to
non-nearest-neighbor interactions in the transfer
direction. Paes-Leme and Shor have obtained
similar results for lattice gases independently. '
Prior to this work, bounds had been obtained on
the spatial behavior of correlation functions. '
Our results should prove useful in a field-theo-
retic context, ' and more generally in statistical
mechanics. '

The outline of our approach is as follows: We
use the direct correlation function c(r, p) first

1011



VOLUMK 39, NUMBKR 16 PHYSICAL RKVIKW LKTTKRS 17 OcTQBKR 1977

defined by OZ as a solution of

p'c(r", p) =u(r, p) p—(c*u)(r, p). (2)

Let functions c„(r) be defined by

(9)
OZ assumed that c(r, p) has essentially the range,
here assumed finite, of the potential. In this Let-
ter, vigorous exponential bounds on the decay of
c(r, p) will be obtained by working with the graphi-
cal expansion of c(r, p) in powers of p; c(r, p) de-
cays at least twice as fast as the bound on u(r, p)
mentioned in the previous paragraph. ' This pro-
vides a meromorphic extension in k of u(k, p)
through the Fourier transforms of Eq. (2). The
nearest singularities are then simple poles at
+kR+ik, [see Eq. (1)]. The essential ingredients
here are that we have analyticity in p and expan-
sion in terms of rooted connected graphs, thus
conferring a strictly finite range r(G) on a graph
G with n vertices; in fact, r(G) n -It d. oes not
appear to have been noticed heretofore that com-
bining this with analyticity enables one to control
the decay of c(r, p), and to deriue Eq. (2) in terms
of a c(r, p) defined a Priori.

The truncated correlation function between two
particles at 6 and r in R" for the canonical en-
semble is given by

u(r, p) = P u„„(r)p"",
n=o

where p is the density and the u„(r) are defined
for a pair potential y(r) by

(4)

f(k) = Je ' ' 'f(r) d'r .
Then we obtain the following result:

(12)

where the graphs G have the additional restriction
over those in (4) that they shall be nodeless. '
Note that c,(r) = u (r) and that for n & 1 (note that
Co = C1 = 0)~

n

n +2 Cn +2 l +1 n+2-l )
1=1

where * denotes the convolution in& . The essen-
tial feature of the c„(r) is that they have half the
range of the u„(r).

I.emma 2: Let the potential y(r) be spherically
symmetrical and have range b. Then

u„(r) =0, lrl & nb;

but

c„(r)=0,
l rl & nb/2.

The idea of the proof" is that the longest-range
graph in Eq. (9) has two vertex-disjoint chains,
between the roots at 5 and r (each having an equal
number of vertices). [Note that f(r) =0 if lrl & b].
We shall use this lemma to make assertions about
the domain of analyticity in k of the Fourier trans-
forms u(k, p) and c(k, p) where for any f& I'(g" )
we have

u(k, p) = Zp Q„R(k),
n=o

(13)

where G are connected simple graphs with n ver-
tices, none being articulation points, "rooted at
5 and r having edges of length r„with weight
f(r, ) defined by

and both u„and u lie in L2A L„. The connection
between the c„(r) and a direct correlation function
is established as follows: Let k ~A' and define
c by

c(k, p) = u(k, p)/[ p'+ pu(k, p)] . (14)

with P =1/kBT for temperature T. So is the sym-
metry number of the graph G.' The integral is
performed over the coordinates of all the unroot-
ed vertices.

The series (3) converges' in & =fp: l pl & p,j
where

with

C (P) = f l f(r ) l
d'r,

and B~ 0 is such that

cp(r) & —2B.

This function is analytic in p in the intersection
of X) and

(p: pe —u(k, p) vk+A'].
This set is, in fact, S itself. Furthermore, c
lies in L20 1-„for p in an compact subset of S.
It has the expansion

c(k, p) = g p" c„„(k),

where c„(k) are the Fourier transforms of the
c„(r) in Eq. (9); this converges for p in & uniform
ly in k HR". Finally, we recapture the usual def-
inition, given by Eq. (2), of the direct correlation
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function. "
For spherically symmetrical potentials, u(k)

and c(k) depend only on k = ik~. From Lemma 1,
the convergence of the fugacity expansion, and

Cauchy inequalities, we obtain the following.
Lemma 2: Let p~R&K); then u(k, p) is analytic

in ~lmk( & k, whereas c(k, p) is analytic in ~imk(
& 2k, with

Results for gases soith hard cores .1. Hard
core.—Here we have f(r) =-1 if ~r~&b; f(r) =0 if
~r~ »; and O(p) =4mb'/3 .By means of a Rouchh
argument, there are simple poles of u close to
the points given by

kb/2 =i(z —a„'),
where

ko=b 'ln(po/p) .
Lemma 3: The equation

u(k, p) = p'c(k, p)/[1- pc(k, p)] (1,7) and

a„' = —inn+ (2n+-,')wi,

o. = 2'~' ln(3/4 mpb'),
(20)

supplies a mermorphic extension of u which has
(i) poles in k, & ~lmki & 2k, (as well as ~lmk~ ) 2k, )
at zeros of 1-pc(k, p); and (ii) branch points
(ceteris paribus) at the branch points (if any) of
c(k, p) in ~imk~) 2k,. Singularities at the poles of

c(k, p), if any, are removable. From Eqs. (5),
(9), (12), and (15) we have

c(k, p) =f(k)+d(k, p), (18)

where d(k, p) has a uniform bound for k in any
compact subset of the strip ~imki & 2k,. Given

any zero of 1 —pf(k) at k„say, we can construct
a box B with k, in its interior such that on its
boundary

~ pd(k, p)/[1 —pf(k)] ~

& 1. Then by
Rouch6's theorem 1-pc(k, p) also has a, zero in-
side B. Finally, as p- 0, B can be made arbi-
trarily small, but the precise details of its shape
depend on the particular potential chosen.

In the remainder of this Letter, we summarize
the results found in special cases, for d =3.

expz = a„-z (21)

kb = + 7j [1+O((lnn) ')]+ [1na + O(ln(lna))], (22)

which gives an oscillatory u(r) of the form (1)
with k, b = inn+ O(ln(inn)) and k,b = m[1+ O((inn) ')].

2. Hard core Plus attractive &cell. In th—is case
we show, within the domain of validity of the the-
ory, that for T small enough, the decay of u, (r)
is asymptotically monotonic and of Ornstein-Zer-
nike type, as

~
r~ —~, but that for T large enough

we recapture the oscillatory decay characteristic
of the hard core. This should be compared with
the exact results" for one-dimensional systems.

Lattice gases. —The whole of our analysis
can be carried through for lattice gases; sums
over Z~ replace integrals over space. Then

with the condition that 0& Imz& m if Ima„') 0 and
that —w& ~lmz~ &0 if Ima„'& 0. This result is val-
id asymptotically for large n. Then the nearest
poles to the real axis are

u(r, p) =j f d(&u), e'"' '
p(c&u, p)/[1 —pc(e, p)1

with (e)~ =(&u„.. . , &u~) is valid for p in a domain similar to (4). This expression may be placed in a
more transparent form by performing a single contour integral over ~d, say. The singularities of the
integrand in ~„, when &u, (with i=1, . .. , d —1) are all real, are localized as before in terms of those
of 1 —pf(k) =0 by means of a Rouchd argument. A typical result of this procedure in the cubic Ising
ferromagnet" with nearest-neighbor interactions, for which

u(r, p) = f,'"'
fd(&u), , exp[- (r, ~ y((v), ,)+i+ r]/sinh[y((&u), ,)]+O(exp[-2~r, ~y(0)]),

(23)

(24)

where
d

cosh[y((&u) )]=(1+p)/p(e'" —1) —Q cos~, . (25)
i =1

Equation (25) is a typical consequence of "one-particle" states in transfer-matrix problems. ' Its form
should be compared particularly with the exact results for the d =2 Ising ferromagnet. "
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We have performed optical measurements on a hydrodynamic instability occurring in a
dilute poIymer solution characterized by a negative value of the thermal diffusion ratio
and heated from above. We determine the threshold condition and the behavior of the
convected mass flow above threshold. Qualitative evidence of critical slowing down is
also reported together with a discussion on the convective-mode wave1ength,

As is well known, a horizontal layer of a. sin-
gle-component fluid heated from below will re-
main stationary as long as the temperature gra-
dient across it does not exceed the critical value
corresponding to R =1708, where R is the Ray-
leigh number. When this value is exceeded, a
convective instability sets in, and both tempera-
ture and fluid velocity become space-dependent

variables according to a well-defined spatial
structure. This is the so called Rayleigh-Bernard
instability (RBI).' Recently a new type of convec-
tive instability occurring in two-component sys-
tems has been described in the literature [Soret-
driven instability (SDI)"]. The instability can be
generated both by heating from below or from
above depending on the sign of the thermal diffu-
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