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slope of the data in Fig. 3.
In conclusion, this Letter reports the first di-

rect measurement of the distribution function of
electrons accelerated solely due to resonant ab-
sorption. These electrons constitute a very low-
density, high-energy component of the distribu-
tion function, which falls off exponentially at high
energy. The decay constant K [&f-exp(-W/K)]
increases linearly with the field strength to field
width ratio of the localized resonant field. Calcu-
lations using a simple model of the field agree
with these low-power experiments and suggest
that the high-energy tail studied here is cut off at
higher electron energies, falling off exponentially
with the decay constant of the resonant electrons
incident on the field. Higher-power experiments
will resolve Af at higher electron energies to test
this prediction.
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A quantitative model for vibrational relaxation of impurity molecules in host crystals
is presented, and applied to the vibrational relaxation of NH and ND in solid Ar. Realis-
tic impurity-host interaction and impurity-cage geometry are employed, It is shown that
impurity rotation is the dominant r eceiving mode in the relaxation, and only a small frac-
tion of the energy released goes directly into phonon modes. The results explain the
faster relaxation of NH compared with ND and the temperature independence of the meas-
ured decay rates.

The important recent progress in experimental
studies of vibrational relaxation of impurity mole-
cules in solids' led to observation of several in-
teresting effects that could not be interpreted
with existing theoretical models' ' in this field.
Several difficulties arose: (1) It was found that
deuterides generally relax more slowly than the

corresponding hydrides (e.g. , NH(A'll, v =1) and
ND in Are; NH(ysZ, v=1) and ND in Ar', CH, F(v
=1) and CD,F in Kr'J. This result is in marked
contrast with the theoretical prediction that the
re&axation rate should decrease with an increase
of the vibrational-energy gap. ' ' (2) The experi-
mental relaxation rates were found to be tempera-
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where p is the number of nearest-neighbor atoms.
Contributions of further atoms may have to be in-
cluded in calculations of the lattice modes, but
are too weak to influence relaxation directly. For
V,. we assume the following form'.

V, =A, exp( —o., i r„-r,. i)

+A, exp( —o., ~
r~ —r,. i)+ V, '", (2)

ture independent or weakly T dependent. The the-
oretical models mentioned above involve multi-
phonon interactions, and as a eonsequenee yield
a strong temperature dependence. (3) The mod-
els referred to are semiquantitative and contain
undetermined parameters. Attempts to calculate
rates by substitution of realistic values for the
parameters give rates that are too small by many
orders of magnitude in most eases. The purpose
of this Letter is to present a model that is free
of the above-mentioned difficulties. Further-
more, we aim at providing a truly quantitative
treatment of vibrational relaxation in solids, i.e.,
an approach that will ealeulate the relaxation rate
from known and sufficiently accurate impurity-to-
host atom interactions. The model that will be
described is a major improvement over a previ-
ous recent treatment by Berkowitz and Gerber. '
The limitation of the result of Ref. 9 is that it is
based on an approximation that is not justified
for most realistic systems. A key point of the
present article is the application of the model to
the calculation of vibrational relaxation of NH in
solid Ar, the first quantitative treatment, so far
as we are aware, of vibrational relaxation in sol-
ids.

Features of the model. —(i) As in Ref. 9, the
three-dimensional (3D) geometry of the impurity
cage is taken into account. For the system of
NH (in the electronic ground state X'Z ) in Ar,
we assume that the impurity c.m. is located at a
substitutional site in the fce framework. Small
static distortions of -2% in the angles and dis-
tances of the nearest-neighbor atoms were intro-
duced to represent the effect of the nonspherical
impurity on the geometry around its site (the sig-
nificance of this will be discussed later). Impur-
ities in the electronic excited state may give rise
to major distortions, the calculation of which is
not feasible.

(ii) The potential causing vibrational relaxation
will be taken as a sum of impurity —nearest-neigh-
bor -atom interactions:

V=+V„ (&)

where the position vectors of the two impurity
atoms are r„and r~, and r, is the position of the
ith Ar neighbor. V " is the long-range attractive
part of the potential. A reliable NH-Ar potential
is not available in the literature, but chemical
similarity suggests that it should not differ much
from the Ar-HCl potential (especially since the
H-Ar component of the interaction affects the re-
laxation most). We fitted the form (2) to the Ar-
HCl potential avialable from gas -phase data. '
The assumption of the dumbbell form is essential,
as it gives the high-order anisotropy components
that play an important role in the relaxation (see
below), and also the dependence of the potential
on the vibrational coordinate of NH. The best fit
to the potential of Ref. 10 was obtained with A,
= 213.3 eV; A, = 1852.05 eV; e, = 2.82 A ', a,
=3.3 A '

(A =-H atom; 8-=N atom). Although A,
)A„ the Ar-8 interaction dominates in influenc-
ing the relaxation, since the heavier N atom is
farther than the H from the nearest Ar neighbor.
The direct contribution of the second and third
terms in (2) to the relaxation will be neglected.

(iii) Local translational and resonance modes
are calculated and included in the treatment as in
Ref. 9. Local-mode contribution to the relaxa-
tion is expected to dominate over that of bulk
modes~ since the nearest-neighbor potential V
varies most strongly with the local-mode coor-
dinate. V of Eqs. (1) and (2) can be written in
terms of creation and destruction operators per-
taining to the various phonon modes':

V=&i Z exp&- ~,lr~ (p, &,V)l)

xexPi-[DQC„(b„+b„g)+C (b y+bg]] (3)

r„,' is the distance vector from the H atom (A)
to the ith Ar when the impurity c.m. and the lat-
tice atoms are at equilibrium configuration; p is
the internal vibrational coordinate of the impur-
ity; 0 and q are the orientation angles of NH with
respect to an arbitrary fixed axis; D is a quantity
that can be computed from the dynamical matrix
of the lattice"; the subscript L refers to the lo-
cal mode, and v refers to bulk modes. Also

C, = n, (h~, I2Ã)'", C, = o, (hl(u, M)'", (4)

with M the impurity mass and K the number of
atoms. For NH in Ar we calculated a local mode
of frequency mi =90 cm '.

(iv) The rotational mode is included in the treat-
ment. Rotational-mode participation as a receiv-
ing mode in vibrational relaxation was postulated
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by Brus and Bondybey' in order to interpret
their experiments showing that hydrides relax
faster than deuterides. Freed and Metiu" pro-
posed a model in which vibrational energy is dis-
sipated into a rotational mode, assumed to have
a continuum of levels (without explicit phonon par-
ticipation). In Ref. 9 and here we include the ro-
tational mode quantitatively. Since NH in elec-
tronic ground state rotates freely, ' we employed
free-rotor states in our calculations. This is ex-
pected to be very accurate for high J levels. How-
ever, we tested the influence of using a libration-
al wave function for J = 0 (estimating a barrier
height of -30 cm '). The results were similar to
those obtained with the J= 0 free-rotor state.

Physical assumPtions and aPProximations.
(a) We assume that the local mode is so nar-

row that its frequency is sharply defined (in some
special cases this breaks down but can be aug-
mented —~ee below).

(b) Since V of (3) depends much more strongly
on the local translational mode than on the bulk
phonons, we assume that the only multiphonon
interactions that may contribute significantly are

I'. -v = Av Z I".z~-"~u
(J~) ~'~'

those involving the local mode. With regard to
the bulk modes, only first-order contributions
need to be considered. The energy difference
E„+E~ —(E„+E~ ) [(v, J) initial vibrational and ro-
tational levels; (v', J') the final levels in a partic-
ular relaxation channelj is assumed to dissipate
into N», local phonons and the mismatch energy

S(u„*= E„+E~ - (E„i+E~ ) —N~~ h(u~

is emitted as a bulk phonon. For each pair (J, J'),
N~~, is rigorously defined.

With the above assumptions, one can evaluate
the golden-rule expression for the following tran-
sition rate:

where 1 i) = Iv, J, n;, n, ) and If) = Iv', J', nz, n.,+ 1);
n,. and n„refer to initial populations of the local
and bulk modes; Av denotes the thermal averag-
ing. Since the local mode has a high frequency,
n,. =0, and n&=N», . The deriva, tion of a final
working expression for T',. f will be described in
another publication'4; here we only give the final
result:

(Va)

I'„„.. .= ge A (D /p, ,cu,)[ QE~„(i)]'&u„*eoL (C~')"'~'f(&zp )'d(~,*)l.@(~,*)+1], (Vb)

i"~,„,~~(i) = J, f P~, (B) exp[ —illi'y, —n~ r~, '(8, y) ~J G, (9, y)P, (9)e'""sin8d6dy (Vc)

and G, is a function that can be evaluated from the coordinates of the molecule and the equilibrium po-
sition of the ith atom. F„; is the distance of the A atom (H) to the ith Ar for p=p, „i p,, and w, are
the reduced mass and vibrational frequency of the impurity; g(~, *) is the value of the phonon distribu-
tion function at the mismatch frequency, and n(~, ) is the population of that frequency.

The above result does not hold when u, *=u~'. Then, no bulk mode is involved and the final density
of states comes from the svidth of the local mode. The result for such a situation, specialized to the
case where only a single local phonon is emitted, is

(Vd)

The results of the calculations on NH (v = 1) and
ND (v = 1) are listed in Tables I and II. For gain-
ing insight the values of the individual rotational
components I &„»& &„0 ~,

&

(M' summed and M
averaged) are given. The striking feature is that
for both NH and ND the rotational mode is the
overwhelmingly dominant receiving mode in the
relaxation process. Vibrational relaxation is
seen to populate very high J states (J= 13 for NH).
These populations then relax by coupling with
phonons. The preferred final rotational state is

the one nearest to compensating for the vibra-
tional-energy gap, with only a small excess ener-
gy going into phonons. The dominant relaxation
channel for NH involves one phonon only, and for
ND three phonons. The contribution of high-or-
der multiphonon process is totally negligible,
and we believe that the conclusion as to the inef-
ficiency of high-order multiphonon relaxation
will be quite general for all impurities of large
vibrational spacing, provided, at least, that
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TABLE I. Relaxation of NH (v= 1) in Ar at 15'K.

Transition
Rate

(sec ')
No. of local

phonons
No. of bulk

phonons

(v =1,J=0)-
(v'= O, J'= 18)

(v =1,J =1)
(v' =O, a'=1S}

(v =1,J=0)—
(v'= 0,J = 12)

(v =1,4=1)-
(v'=O, a =11)

2.4x 10

6.8x 10

1,4x 10

8.7x 1O-" 10

there are no strong site distortions. The fact
that relaxation of NH is faster than that of ND is
due to the fact that the latter has less mass asym-
metry giving rise to weaker rotational- (Coriolis-)
coupling elements E»"". In addition, to achieve
near resonance in ND, a higher final J' state is
necessary than in NH, and this also implies weak-
er rotational-coupling elements E~~"". The over-
all relaxation time calculated for NH is 7.=4.2
x10 ~ sec. This is (given the complexity of the
problem) in excellent agreement with Bondybey's
experimental value ~=1.9&10 ~ sec. Although in
Table I we listed also transition rates with J=1
as the initial state, the contribution of the latter
is negligible since the J=1 is not thermally popu-
lated at the temperature range of the experiment
[(4-30)'K)]. For ND the decay time we compute
7 =0.49 sec, which differs greatly from the ex-
perimental 7=3.1&10 ' see, but Bondybey pointed
out that the decay in ND is radiative. Hence ex-
periment and theory are consistent in this case.
The relaxation rate we ealeulated for NH is tem-
perature independent since the dominant (v = 1,
J = 0)- (v ' = 0, 8' = l3) transition involves only a
local phonon, thermally unpopulated throughout
experimental T range. Equations (7) will give

some temperature dependence for systems that
have a moderate mismatch frequency (he@„*(kT).
However, such a T dependence will be mild in
comparison with that predicted by multiphonon
models of vibrational relaxation. Finally, we
draw attention to the importance of introducing
small distortions ((2% in the angles) in this case.
In the absence of any distortion the symmetry of
crystal-field potential (1) and (2) will result in a
vanishing rate for even-odd transitions in J [such
as (v = 1, Z= 0)- (v = 0, J= 13)]. The distortion can
be crudely estimated from the Ar -NH and Ar -Ar
interactions and the result is not too sensitive to
it. '4

It is our belief that these results prove the fea-
sibility of quantitative calculations of vibrational
relaxation in solids. Further examples will be
treated in forthcoming publications.
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1.4x 10- '5 10
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We present theoretical calculations and experimental measurements of the phonon line-
width for lb. The calculations employ the rigid muffin-tin approximation and a realistic
band structure. The measurements were done at low temperature to minimize the con-
tributions to the linewidth from phonon-phonon interactions. The calculations predict and
experiments confirm strong electron-phonon coupling for the longitudinal phonon modes
in the [110]direction.

The phonon linewidth contains very detailed in-
formation concerning the electron-phonon inter-
action. Allen' has shown that the electron-phonon
contribution to the linewidth of a phonon having
mode index i and crystal momentum q, y;(q),
measures directly the contribution to the total
phonon-mediated electron-electron coupling aris-
ing from this particular phonon. Thus the elec-
tron-phonon coupling parameter X which deter-
mines the electronic mass enhancement and su-
perconducting transition temperature' is simply
a weighted average of the phonon linewidth,

where N(E„) is the density of states of one spin
at the Fermi energy. ' The spectral function'
n'(&u)E(~), obtainable from tunneling measure-
ments, may also be written as an average over
the linewidth as

n'(~)&(~) =2 r;(q)&4 —~;(q)l/»&(&p)~ (l)

Linewidth measurements are very important for
Nb because Nb has the highest transition temper-
ature of any element and because the tunneling
measurements on Nb remain quite controver-
sial." Axe and Shirane, ' Shapiro, Shirane, and

Axe, ' and Bobrovskii et al. ' have measured pho-
non linewidths in Nb, Sn, Nb, and Pb, respective-
ly. These Nb and Nb, Sn measurements were,

however, limited to transverse modes and to fre-
quencies less than twice the superconducting en-
ergy gap.

The linewidth can be calculated as a double Fer-
mi-surf ace integral

x O(k -k' —q)i~yy, 'i', (2)

where M, is the atomic mass. The matrix ele-
ment Myri' is given by Myri'= fd x+*(r)equi'
x VVQ. (r), where Q is an electronic wave func-
tion, c is a phonon polarization vector, and VV

represents the change in crystal potential due to
the displacement of a single atom. In our calcu-
lations we have employed the rigid muffin-tin ap-
proximation' which has been applied to a number
of systems"" and which seems to predict the
correct magnitude and trends for the average
electron-phonon coupling strength in the transi-
tion metals. "

We have calculated y,.(q) throughout the Bril-
louin zone by performing the integrations indicat-
ed in Eq. (2). Ea,ch Fermi-surface integration
extended over a mesh of 53424 first-principles
points at the Fermi energy Values of y, (.q) were
stored in 5200 bins chosen to fill the irreducible
wedge of the phonon Brillouin zone. The results
of our calculations (described below) indicated
considerable variation in y,. (q) as a function of
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