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The two conditions (15) are of rather different
nature physically. Given as masses and cross
sections, it is often possible to find a relative
density n,/n, such that the first condition is satis-
fied. On the other hand, the densities do not ap-
pear in the second condition. In other words, if
the second condition is satisfied, exact solutions
can be written down for all values of »,/n,.
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An exactly solvable model of the crystal-vacuum interface is constructed which exhi-
bits a roughening transition. The model is obtained as a special limit of a ferromagne-
tic Ising model and it is isomorphic to the symmetric six-vertex model. Some of the
thermodynamic properties of the system are discussed.

The concept of interface roughening was intro-
duced in the theory of crystal growth by Burton
and co-workers™? on the basis of a comparison
between a crystal surface and the quadratic Ising
model. From a different point of view Gallavotti
conjectured® that the cubic Ising model might
show a roughening transition for an interface be-
tween phases of opposite magnetization. His con-
jecture was supported by Weeks, Gilmer, and
Leamy,* who used low-temperature expansions
to estimate the roughening temperature 75 of the
isotropic cubic Ising model and the solid-on-sol-
id (SOS) model, which is obtained from the cubic
Ising model by letting the vertical coupling con-
stant go to infinity while keeping the horizontal
coupling constants fixed (an interface is main-
tained by imposing appropriate boundary condi-
tions). Their estimates of T r are well below the
bulk critical temperature in either case. Fur-
ther evidence for the existence of a roughening
transition comes from computer simulations of
the interface in the SOS model and the discrete
Gaussian (DG) model.>"8 A rigorous proof for
the existence of such a transition, however, to
our knowledge has not been given before.

Here I discuss an exactly solvable model which
does show a roughening transition. We start from
a body-centered-cubic Ising model of 2NX 2NX 2N
sites with ferromagnetic nearest-neighbor coup-
ling J, (between particles in the center and on a
corner of an elementary cube) and next-nearest-
neighbor couplings J,, J,, and J, in the three
main lattice directions. The spins in the two bot-

tom layers are kept positive, those in the two top
layers negative, and free boundary conditions are
imposed on the side walls (in the crystal interpre-
tation positive spins correspond to occupied lat-
tice sites and negative spins to empty ones). The
body-centered solid-on-solid (BCSOS) model is
obtained by letting J, approach infinity, keeping
J,, J,, and J, constant. In this limit the so-
called SOS condition is satisfied (this means that
in no column of the lattice is a negative spin to
be found below a positive one). In Fig. 1 some
spin configurations are sketched on a “ladder” of
two neighboring columns of spins on a lattice of
height 8. Because of the imposed boundary con-
ditions such a ladder always contains at least

one (+-) bond of strength +J, [e.g., bond 2 in
Fig. 1(a)], but in the limit as J,~ « configura-
tions in which any ladder contains more than one
(+-) bond such as in Fig. 1(b) are strictly for-
bidden. From this the SOS condition follows di-
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FIG. 1. Some spin configurations on a ladder of two
neighboring columns,
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FIG. 2. The allowed six vertices and the correspond-
ing configurations of interface heights.

rectly. As a result, all allowed spin configura-
tions can be specified completely by giving the
level of the uppermost positive spin in each col-
umn. Between neighboring columns these levels
may differ only by +% or —3 (our unit of length

is the next-nearest-neighbor distance), since oth-
erwise again the ladder containing these columns
would possess more than one (+-) bond [see Fig.
1(c)]. Now each allowed spin configuration can
be translated into a vertex configuration by draw-
ing arrows of length 1/V2 on the dual lattice of
the “lattice of vertical columns”; i.e., each ar-
row bisects a line piece connecting two neighbor-
ing columns, and its direction is chosen such that
the column with the higher level of positive spins
is to the right of the arrow (see Fig. 2). Clearly
the vertices.generated this way satisfy the ice
rule (two arrows in and two arrows out). Con-
versely each vertex configuration satisfying the
ice rule defines an allowed set of positive spin
levels, uniquely up to an overall additive integer,
resulting from the freedom to shift the interface
as a whole upward or downward. As a result the
BCSOS model is isomorphic to the six-vertex

“ponents are infinite,

model for which the exact solution is known.®"*!

From the pictures in Fig. 2 we can immediate-
ly read off the vertex energies. One finds €; =€,
=d, =d,; €3=€,=d, =J,; €;=€5=d, —dJ,. So all dif-
ferent versions of the symmetvic six-vertex mod-
el are reproduced, dependent on the values of J,
and J,. Notice that the value of J, is irrelevant.

Important quantities in the six-vertex model
are x and y, the polarization per site in the x and
y directions, respectively. In the BCSOS model
these quantities translate into V2 times the height
increase of the interface per unit length in the
(=1,-1) and (1, - 1) directions, respectively.

All values of x and y between +1 and — 1 can be
forced on the system by prescribing appropriate
boundary conditions on the side walls.

The most interesting case is the isotropic fer-
romagnet with J, =J,= 3€>0. This corresponds
to the F model, for which the thermodynamic
properties are discussed extensively in Ref. 11.
The system has a phase transition at Tz =¢€/(k;

X 1n2), where kg is Boltzmann’s constant. This
transition is of infinite order, the singular part
of the free energy behaves as exp(-a|T =T x| "¥?)
where o is some constant, all derivatives of the
free energy with respect to temperature are con-
tinuous, and a plot of, for example, specific heat
versus temperature does not show any visible
sign of a phase transition at T';. All critical ex-
12°15 Hence the critical be-
havior of the BCSOS model is entirely different
from that of the quadratic Ising model, which has
been used widely to describe the crystal-solution
interface.

A quantity which is not discussed in much de-
tail in Ref. 11 is the energy per unit length, E,
of a single step on the interface.'® For diagonal
and horizontal steps one obtains fairly straight-
forwardly from Refs. 11 and 10, respectively,

E 4,55 /€ = 2/3[ 1 - 4 exp(= 28€)]"¥{4 + 3 (= 1)"[1+ (n = Dtanh((n = 1A) - ntanh(m)]}, (1a)

g

n=1

By "C08 /€ =2[ 1 - 4 exp(= 2B€)]" V2 {3 + i (= 1[5+ (n - Dtanh((r = IN) = (n - Dtanh((e — )]},  (1b)

where B =(k3T)"! and
by =2{Be +In({1+[1-4 exp(- 266)]1/2}/2)}/.

In Fig. 3 these quantities are plotted as a func-
tion of the reduced temperature T =kyT/€, to-
gether with the step energies in the quadratic Is-
ing model as given by Onsager'” and by Fisher
and Ferdinand.'® At low temperatures the step
energies for the two models are equal as one
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might expect. The behavior near the critical
point is, again, entirely different for the two
models. In the Ising model the step energies ap-
proach their nonzero critical value linearly,
whereas in the BCSOS model the step energies
approach zero (as predicted by Leamy and Gil-
mer®), again as exp(~a|T ~Tg|"¥?). As in the
Ising model,'® the step energy becomes isotropic
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FIG. 3. Step energies vs temperature for a single
horizontal and diagonal step in BCSOS and quadratic
Ising model. Solid line, Epo°C5°%/¢; dashed line,
Enor8 /e dotted line, EdiagBCSOS/e; and dash-dotted
line, Ediag-SIng/G. The quantitity (Ediag —Ehor) /€ is plot-
ted as crosses., Within the precision of this graph it
is the same for the two models.

as Ty is approached. Remarkable is that the dif-
ference (E 4,,—E1)/€ (see Fig. 3) is almost the
same for the two models (within 0.002 at all tem-
peratures). The step free energy, like the step
energy, vanishes at T. Hence one may conclude
that the phase transition at T'; is indeed a rough-
ening transition: At this temperature the inter-
face loses its resistance against the formation of
arbitrarily long ridges. Finally we want to quote
the fact'! that a phase transition occurs only for
x =y =0; for nonzero values of x and y the inter-
face is already rough at 7'=0. )

It is interesting that the symmetric eight-ver-
tex model*® can also be interpreted as an inter-
face model, if one identifies the vertices 7 and 8
with end points of screw dislocations, to which
then have to be attributed certain well-defined
energies. It is well known that the inclusion of
such impurities reduces the critical exponents
to finite values.?"%

Although the existence of a roughening transi-
tion in the BCSOS model does not prove anything

about the ordinary SOS model or the isotropic
simple-cubic Ising model, it certainly makes the
existence of a roughening transition in the latter
two models more plausible. On the basis of uni-
versality of critical behavior for systems with
the same symmetry properties'® one might fur-
thermore expect that the roughening transition
for these models will be of the same infinite-or-
der type as for the BCSOS model. Chui and
Weeks® recently showed that the DG model can
be mapped on the two-dimensional Coulomb gas
and should have the same critical behavior as the
latter. Indeed the same type of infinite-order
transition as exhibited by the F model has been
found by Kosterlitz for the two-dimensional Cou-
lomb gas®'; from Sutherland’s calculation of the
vertical-arrow correlation function in the F mod-
el for T =2T (presumably a typical above-criti-
cal temperature)®®!! it follows that the square of
the height difference in the BCSOS model {(%;
—h,;)> 4 is proportional to InR;; (where R;; is the
distance between the sites i and j), just as in the
DG model,*® and Swendsen’s computer data for
the DG model” also look consistent with equiva-
lent critical behavior of the two models.

Computer results obtained for the SOS model®”
on finite size lattices appear very similar to my
results for the BCSOS model as well, but Swend-
sen’s investigations of the size dependence of spe-
cific heat and step specific heat in this model
suggest that these quantities may become diver-
gent at Ty in the infinite-size limit. In my opin-
ion his data are not decisive and the possibility
of a large but finite maximum in the specific heat
(or a minimum in the step specific heat) close to
T cannot be excluded. A definite determination
of the critical behavior of the SOS model seems
to require either the computer simulation of still
larger systems or a better theoretical under-
standing of the type of interface models discussed
here and the relations between them. If the vari-
ous models indeed have different critical behav-
ior it is an interesting question where and why
universality breaks down.

For the BCSOS model itself various quantities
of interest are still to be calculated. In principle
the free energy is known for arbitrary x and y ©
(although no practically useful form has appeared
in the literature so far), which would offer the
opportunity to calculate the direction dependence
of step free energies as well as free energies
for systems with interacting steps.

I wish to thank Dr. B. U. Felderhof for his
careful reading of the manuscript.
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Inclusive spectra are presented for m* production in 100-GeV/c Bp interactions. The
rapidity distribution for the difference @p —pp) approximately scales as the difference
in total cross sections in the fragmentation region between 12 and 100 GeV/c and exhi-
bits an approximate s~ 1/2 dependence in the central region.

Extensive data from the CERN intersecting stor-
age rings (ISR) and from Fermilab now exist on
inclusive particle production in baryon-baryon
and meson-baryon scattering at high energies.
Multipion production in antinucleon-nucleon inter-
actions, however, has not been published above a
laboratory momentum of 15 GeV/c.! Consequent-
ly, nothing is known about the high-energy behav-
vior of multiparticle production in pp interactions
and, in particular, about the baryon annihilation
process above ~12 GeV/c.? In this Letter we
present the first results on inclusive 7* produc-
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tion in pp interactions at 100 GeV/c. These data
permit a study of the center-of-mass~ (c.m.) en-
ergy dependence of inclusive 7* production in both
the fragmentation and central regions. Although
individual annihilation events cannot be identified
in this experiment, by making comparisons with
similar data from pp interactions we infer some
features of inclusive pion production which may
describe high-energy baryon annihilation.

The data result from a 98 000-picture exposure
of the Fermilab 30-in. hydrogen bubble chamber,
wide-gap spark chamber hybrid system to a 100-



