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Exact solutions of similarity type are obtained for Boltzmann equations describing the
temporal relaxation to equilibrium of an N-component gas with elastic collision cross

sections of special form.

In an earlier communication,’ we presented cer-
tain exact solutions of the nonlinear Boltzmann
equation for the temporal relaxation to equilibri-
um of a one-component gas. In many cases of in-
terest (e.g., gas-phase reactions, D-T fusion),
it is necessary to consider relaxation in multi-
component systems. The purpose of this Letter
is to indicate how exact solutions can be obtained
for an N-component gas with N =2, The generali-
zation from one to N components is nontrivial; in
the latter case, such exact solutions exist only
when the parameters that describe the system
satisfy certain conditions.

Consider an infinite, spatially homogeneous,
and isotropic gas composed of N species of mole-
cules which interact only through binary elastic
collisions. The state at time ¢ is specified by N
distribution functions »,f,(v, t) (@=1,..., N) where
¥ is a velocity variable, v= |¥l, and n, is the con-
stant number density of @ molecules. We consid-
er models in which the cross section for collision
of a molecules with & molecules has the form

Oba(by X)=Kba(pba(x)/g, a’bzly ey N, (1)

where g is the relative speed, the k,,=«,, are
constants, and the ¢,,= ¢,, are general functions
of the center-of-mass scattering angle y. For
conciseness, attention will here be confined to
isotropic scattering, i.e., ¢,,=1, and to the case
N=2.

For the single-component case, the exact solu-
tion has the form®

f, 7)=8(v; a(T) [P(1) + Q(1)v?], (2)

where 7 is a dimensionless time variable, a, P,
and @ are certain functions, and

& (v; @)= (27a) 32 exp(-v2/2a). 3)

In this solution, the high-energy tail is initially
highly depleted (because of the factor &), and sub-
sequently builds up gradually to the appropriate
Maxwellian value. The process is slow because
two particles of relatively high energy have to
collide in a special way to give one of them ap-
preciably higher energy.

In the case of N components, we again seek so-
lutions of the form

fulv, T)=8(v; a (T [P,(7) + @ (T2,
a=1,...,N. (4

If the “mean” kinetic energies (KE) of the vari-
ous components, as represented by the factor
®(v; a, (1)), were initially different, the compo-
nents with lower KE would rapidly increase their
KE by collisions with components of higher mean
KE. Their high-energy Maxwellian tails would
then build up in a way completely different from
the case of a single component, We therefore ex-
pect the mean KE of all the components to be the

991



VoLuME 38, NUMBER 18

PHYSICAL REVIEW LETTERS

2 May 1977

same:

mya(T)=mya(T)=. . . =myay(T)=E(1), (5)

say, where m , is the mass of an a molecule.
This is a rather strong constraint. Thus the ex-
act solutions have a more special character in
the multicomponent than in the single-component
case. As will appear later, such solutions are
possible only if parameters describing the sys-
tem satisfy certain conditions.

The elastic collisions of @ molecules with b
molecules can be represented symbolically by

(m g V) + (my, W) X2 (a, ') + (b, W')

(a,0=1, 2), (6) |

. .
Ul 7). 5 A7;",;‘]] {=fulw, ) fiolw, 7) + £, ", T) filw’, 7)}d2 dW
b=1

T

(for a=1, 2), where d§2=sinydyde.

We now seek solutions of the form (4) subject
to the constraints (5). It is convenient to set
R (1)=Q,(7)a,(T) (a=1, 2). Conservation of parti-
cles and of energy then implies that

P,+3R,=1 (a=1,2), (12)

2
£27n,(P,+5R,) = (n, +ny )k 3 T,

a=1

(13)

where k; is Boltzmann’s constant and 7 is the
constant kinetic temperature of the system.

It is convenient to define parameters p, p,, and
p, as follows:

p=4mm,/(m, +m,)?,

1)157\22—)\21#(3 - 24), (14)

D2 =h11 = A 1ak(3 = 2p).

When Eqgs. (4), (5), (8), and (9) are substituted
into the Boltzmann equations (11), all integrations
can be performed explicitly, We thus obtain two
equations, each representing equality of a pair of
expressions quadratic in »%., Equation of coeffi-
cients then leads to a system of six nonlinear dif-
ferential equations for the five functions ¢(7),
P (1), and R (7) (a=1, 2).

Accordingly, it is possible to find solutions pro-
vided that one condition is satisfied for all 7, It
turns out, fortunately, that this condition is actu-
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where, with the notation

>

myV+m, W . o oo,
= ——2b =V -w, g'=V -W. (7)

-

€ is the angle between the plane of g, G and the

plane of g, g’. It is easily established that

v'2=p%+ —2—"1’2—8, w'?=y? - -—27-71—-“-—8, 8)
m,tmy, m,t+tm,
where
S=(G-g§)(cosy — 1)+ | G xg| siny cose. (9)

Let ¥ be some mean value of the k,,, and (for

N=2) set
Xoa=MpKpe/(ny +0x)k (a,b=1, 2). (10)

Then, in terms of the dimensionless time varia-
ble 7=4n(n, +n,)kt, the Boltzmann equations for
the system assume the form

(11)

ally independent of 7, and is
A A
- 22<_z;__m>_1]=0.
(?, pz)[ 2 b, Dy

Therefore explicit exact solutions can be found
when either (i)

P1=P2 (15a)
or (ii)
2u2(?\21/,b1 _Alz/pz): 1. (15b)

In either case, the solution can be expressed in
terms of a function ’

R(7)={AexplA(r - 7,)] - B} 4, (16)
where

A=E{Ny #2500 (3 - 2up,/p))}, 17)

B=5{A 1 01+ X513 = 20) Py}, (18)

and the constant 7, corresponds to the arbitrary
choice of a time origin. Then

R, (1)=p,R(7) (a=1,2) (19)
and

(ny+n,)
ny+ny)+ 2 Py +nyp)R(T)

¢(n)= ( (20)
The determination of ¢, @, and P,, P, from Egs.
(5) and (12) is straightforward. This completes
the solution,
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The two conditions (15) are of rather different
nature physically. Given as masses and cross
sections, it is often possible to find a relative
density n,/n, such that the first condition is satis-
fied. On the other hand, the densities do not ap-
pear in the second condition. In other words, if
the second condition is satisfied, exact solutions
can be written down for all values of »,/n,.
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An exactly solvable model of the crystal-vacuum interface is constructed which exhi-
bits a roughening transition. The model is obtained as a special limit of a ferromagne-
tic Ising model and it is isomorphic to the symmetric six-vertex model. Some of the
thermodynamic properties of the system are discussed.

The concept of interface roughening was intro-
duced in the theory of crystal growth by Burton
and co-workers™? on the basis of a comparison
between a crystal surface and the quadratic Ising
model. From a different point of view Gallavotti
conjectured® that the cubic Ising model might
show a roughening transition for an interface be-
tween phases of opposite magnetization. His con-
jecture was supported by Weeks, Gilmer, and
Leamy,* who used low-temperature expansions
to estimate the roughening temperature 75 of the
isotropic cubic Ising model and the solid-on-sol-
id (SOS) model, which is obtained from the cubic
Ising model by letting the vertical coupling con-
stant go to infinity while keeping the horizontal
coupling constants fixed (an interface is main-
tained by imposing appropriate boundary condi-
tions). Their estimates of T r are well below the
bulk critical temperature in either case. Fur-
ther evidence for the existence of a roughening
transition comes from computer simulations of
the interface in the SOS model and the discrete
Gaussian (DG) model.>"8 A rigorous proof for
the existence of such a transition, however, to
our knowledge has not been given before.

Here I discuss an exactly solvable model which
does show a roughening transition. We start from
a body-centered-cubic Ising model of 2NX 2NX 2N
sites with ferromagnetic nearest-neighbor coup-
ling J, (between particles in the center and on a
corner of an elementary cube) and next-nearest-
neighbor couplings J,, J,, and J, in the three
main lattice directions. The spins in the two bot-

tom layers are kept positive, those in the two top
layers negative, and free boundary conditions are
imposed on the side walls (in the crystal interpre-
tation positive spins correspond to occupied lat-
tice sites and negative spins to empty ones). The
body-centered solid-on-solid (BCSOS) model is
obtained by letting J, approach infinity, keeping
J,, J,, and J, constant. In this limit the so-
called SOS condition is satisfied (this means that
in no column of the lattice is a negative spin to
be found below a positive one). In Fig. 1 some
spin configurations are sketched on a “ladder” of
two neighboring columns of spins on a lattice of
height 8. Because of the imposed boundary con-
ditions such a ladder always contains at least

one (+-) bond of strength +J, [e.g., bond 2 in
Fig. 1(a)], but in the limit as J,~ « configura-
tions in which any ladder contains more than one
(+-) bond such as in Fig. 1(b) are strictly for-
bidden. From this the SOS condition follows di-
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FIG. 1. Some spin configurations on a ladder of two
neighboring columns,

993



