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New Type of Multicritical Behavior in a Triangular Lattice Gas Model*

B. Mihuraf and D. P, Landau
Department of Physics and Astvonomy, University of Georgia, Athens, Geovgia 30602
(Received 27 December 1976)

A Monte Carlo study of a triangular lattice gas model appropriate to He! monolayers ad-
sorbed on the basal plane of graphite reveals a rich variety of critical and multicritical
points including a new, special type of “bicritical” point.

The theoretical interest in the critical behavior
of lattice gas models has been given real, practi-
cal significance by the recent experimental stud-
ies of adsorbed gas layers on crystalline sub-
strates.® The results indicate a tendency for
the adsorbed atoms to lie on a regular lattice
which is formed by the periodic potential of the
underlying crystal. Although numerous results
for surface layer adsorption exist, by far the
most detailed data exist for gases adsorbed on
the basal plane of graphite. The graphite surface
has hexagonal symmetry and the adsorbed atoms
tend to sit above hexagon centers forming, as
shown in Fig. 1, a triangular lattice. Because of
the large “effective area” of the gas atoms, oc-
cupation of nearest-neighbor (nn) sites on this lat-
tice is very unfavorable, but an ordered state
has been observed in which next-nearest-neigh-
bor (nnn) sites are filled as shown in Fig. 1. An
appropriate model for adsorbed gas layers is a
triangular lattice gas with repulsive nn coupling.
This simple model however, is equivalent to the
triangular Ising lattice with antiferromagnetic nn
coupling which does not order in zero magnetic
field.,* The addition of attractive nnn interactions
will, however, stabilize the ordered state® shown
in Fig. 1. The appropriate Hamiltonian written
in terms of occupation variables z; is

K=V 0 23nm; = Vo 2y 00+ u2on, (1)
nn nnn i
pairs pairs
where »;=1 if site 7 is occupied and »;=0 other-
wise. p is the chemical potential conjugate to the
converage (n). Using the simple transformation
to spin variables,

ni=§(1—0,-), (2)

we readily find that Eq. (1) is equivalent to a tri-
angular Ising model in a magnetic field:

3C=Jnn Ecicj—Jnnn20i0k+H20b (3)
nn nnn i
pairs pairs

where the coverage () of the lattice gas is re-
lated to the magnetization (o) of the Ising model

by Eq. (2). Campbell and Schick® studied this lat-
tice gas model using the Bethe-Peierls-Weiss
method and obtained rather unusual results. For
(n) =% (the equivalent of the Ising model in zero
magnetic field) no ordered state was found. How-
ever, for a range of larger and smaller y, low-
temperature ordered states appeared, separated
from the liquid-gas phase by lines of first-order
transitions only.

Since this problem is interesting from a purely
theoretical viewpoint as well as pertinent to ad-
sorbed gas layers, a more accurate method of
study is clearly needed. We have therefore used
a Monte Carlo (MC) method to study this model
on N XN rhomboid-shaped triangular lattices with
periodic boundary conditions and 12 <N <60, For
simplicity (and to reduce the amount of computer
time required) we have studied the single ratio
Voon/Van =1. Changes in this ratio will clearly
change the results in a quantitative fashion but
(for a wide range of values) should not affect the
qualitative features of the phase diagram. Data
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FIG. 1. Adsorbed gas atoms on a graphite substrate.
The hexagons show the graphite surface structure and
the shaded circles show the relative positions of the
gas atoms in the ordered state. The upper portion of
the diagram shows the triangular lattice formed by the
possible gas atom occupation sites. The nn (V) and
nnn (Vypp) interactions are shown by the solid lines.
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FIG. 2. Phase diagram in chemical-potential—temper-
ature plane. The solid cruves show the second-order
portion of the phase boundary. The lines of first order
are dashed. Actual data are only shown for the upper
portion of the diagram.

were taken either at constant chemical potential
or at constant temperature. Between 1000 MC
step/spin and 5000 MC steps/spin were kept for
calculating averages. Average values of the in-
ternal energy, coverage, and order parameter
(sublattice coverage) were determined directly
and the specific heat, concentration (coverage)
susceptibility, and ordering susceptibility were
determined from the fluctuations. The details of
the method have been described elsewhere.”
From the behavior of the coverage and the spe-
cific heat we were able to trace out the phase
boundaries as a function of chemical potential
and temperature. The results shown in Fig. 2 in-
dicate two different ordered states may exist (in
the magnetic analog the two states are simply
the time-reversed conjugates of each other).
The transition between the ordered states appears
to be first order all the way up to a “bicritical”
(multicritical) point® (the u=0 critical point)
where both phases become simultaneously criti-
cal. As the chemical potential is increased or
decreased from zero, the transition to the liquid-
gas state remains second order and T, first in-
creases and then decreases. Eventually a tricrit-
ical point appears (for both positive and negative
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FIG. 3. Phase diagram in density-temperature plane.
Data points are shown for the upper portion of the dia-
gram (second-order points are open, first-order points
are filled).

1) and the transition then becomes first order.
These data show clearly that the Bethe-Peierls-
Weiss method does not even correctly reproduce
the qualitative features of the phase diagram.

The corresponding variation of the critical cover-
age versus temperature is shown in Fig. 3. This
diagram shows that both ordered phases are sta-
ble over a significant range of coverage and that
the maximum critical temperature occurs, with-
in experimental error (~+0.03), at coverages of
3 and £, Because of the existence of the mixed
phases over such a wide range of (#) and T it is
clear that multiple phase transitions may be seen
at constant coverage yet be missing for constant
p. For example for (n)=const just below i only
one phase transition occurs, for a mixed phase

to the liquid-gas state, whereas for (») just above
1 two transitions will be seen. This sort of be-
havior has apparently been observed in Kr on
Grafoil® and would be expected in other gas mono-
layers on other substrates as well. In fact the
qualitative features of the entire phase diagram
should be appropriate to a wide range of adsorbed
monolayers although the relative positions of the
“bicritical” and tricritical points will depend on
the relative strangth of nn and nnn interactions,

If the relative magnitude of the nnn coupling is re-
duced, we expect the bicritical and tricritical
temperatures to be lowered. The phase diagram*
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for V., =0 supports that expectation in that the
multicritical points are at 7=0. From Fig. 3 we
see that in systems such as rare gases on lamel-
lar halides’ where full monolayer coverage cor-
responds to occupation of 100% of the substrate
sites the adsorption isotherms could show as
many as three vertical steps in the process of
completion of one monolayer,

The critical behavior of this model should be
quite interesting because of the symmetry of the
ordered state and the unusual nature of the phase
diagram. Alexander!! has suggested that the crit-
ical behavior of this model should be the same as
for the three-state two-dimensional Potts model.
The Potts-model exponents are, however, very
close!? to the Ising-model values, and in fact the
critical exponents along the second-order portion
of the phase boundary are consistent with either
Ising or Potts values. The bicritical behavior,
however, is quite different. The peak values of
the specific heat for p=0 are much smaller than
for lattices of equal size and yu#0. An examina-
tion of the finite-size behavior™'%!® suggests that
« is negative! This conclusion is consistent with
the relatively strong finite-size rounding which
suggests v>1., (Hyperscaling demands that 2 - «
=dv; the present data suggest that both sides of
the hyperscaling equation may be greater than 2
but nonetheless equal.) A finite-size scaling anal-
ysis of the bicritical behavior of the order param-
eter (M,) indicates that g is much larger than
either the Ising or Potts values. The finite-size
scaling relation'®

MNP/ = f(ENV7), (@)

where t=1-T/T, is obeyed for $=0.3+0.1 and v
in the range 1-1.5. A similar analysis of the or-
dering susceptibility suggests y=1.9+0.2. Since
it appears likely that « is negative, it is quite
likely that the exponent equality a+28+y =2 re-
mains valid. Although it has not been possible to
study the temperature dependence of the discon-
tinuity in the magnetization across the y=0 phase
boundary closer than ¢{~107!, the behavior out-
side this region suggests that

AMoc tBm (5)

with g, =1.5+0.4. This value is much larger than
that obtained for the simple three-dimensional
spin-flop bicritical point'® (8, ~0.85) and, in fact,
suggests that the curvature of AM vs T has the
opposite sign. It would clearly be desirable to
compare the results of our study with real experi-

mental data, and adsorbed monolayers offer the
only realistic possibility. Of particular interest
is the “bicritical” point (z) =3, but in many stud-
ies of real systems it has been found that the sur-
face layer goes out of registry with the substrate
and the model may no longer be applicable. The
unusual multicritical behavior of this model is
particularly interesting since it arises solely
from the symmetry of the lattice. The role of
lattice symmetry is further emphasized by the
fact that the same Hamiltonian on a square lat-
tice!” does not produce the bicritical behavior ob-
served on the triangular lattice.

We wish to thank Professor K. Binder, Profes-
sor M. Schick, and Professor M. Wortis for help-
ful discussions.
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Observation of the Two-Dimensional Plasmon in Silicon Inversion Layers
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The two-dimensional plasmon of anz inversion layer of (100) p-type Si is observed at
a fixed wave vector as a function of electron density. The position, width, and strength

of the resonance agree with existing theory at electron densities = 10'2/cm

%, At lower

densities, the resonance position is below the predicted value, implying a substantial in-

crease in the electron mass,

We have observed, in the far-infrared trans-
mission through a silicon metal-oxide-semicon-
ductor field-effect transistor (MOSFET), reso-
nances which are due to plasmons in the two-di-
mensional (2D) electron gas that forms the inver-
sion layer. The plasmons are coupled to the radi-
ation field by locating a grating structure in prox-
imity to the electron gas. At large inversion-lay-
er electron densities, n,, where the electron gas
is metallic, the resonance position, width, and
intensity agree in detail with a theory of the coup-
ling of the plasmons and the radiation field, while
at low densities, <10'2/cm? difficulties are en-
countered that may be related to the anomalous
electron localization often seen in these devices.

Plasma oscillations of a 2D electron gas differ
in a nontrivial way from the corresponding oscil-
lations in a 3D system. This difference stems
from the fact that the restoring force for the
charge-density oscillations for the. 2D system is
provided by the electrostatic field which remains
3D, fringing into the space on either side of the
2D sheet of charge. This has a number of irapor-
tant consequences that have been explored in
great detail’™!® from a theoretical point of view,
beginning with the work of Ritchie! on thin metal
foils. There are two key features. (1) The fre-
quency of the 2D plasmon goes to zero as the
wave vector goes to zero. (2) The frequency is
perturbed by the shape and dielectric properties
of matter in the immediate vicinity of the electron
gas. In marked contrast to the extensive theoret-
ical development, the only experiment that has
directly probed the 2D plasmon is the work re-
ported recently by Grimes and Adams'* and Platz-
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man and Beni'® on electrons bound to a helium
surface,

Our experiments were performed on an n-chan-
nel Si MOSFET with peak mobility of 16 000 cm?/
V sec at 4.2°K. The device was fabricated on the
(100) surface of a p-Si substrate with a net accep-
tor concentration N, ~ N,=1.1x10'® ¢cm™3 The
1400-A dry gate oxide was grown at 1100°C.

Fixed oxide charge |Q | was found to be =<4
x10" cm. Interface state density was negligible,
<1% of the inversion-layer state density. The in-
version layer was 250 ym X250 ym with conven-
tional source and drain contacts. The gate elec-
trode was a semitransparent Ti film (sheet resis-
tance ~350 ©/sq), upon which was superimposed
a grating of heavy gold metallization, with peri-
odicity @=3.52 ym (see inset of Fig. 2). The dc
device characteristics were unaltered by opening
the transparent regions in the gold metallization.
The electron density was obtained from the gate
voltage, V,, measured from the 77°K conduction
threshold, V,, and the oxide capacitance per unit
area, C.,, by n,=(C./e)(V,-V,). Radiation
was transmitted through the inversion layer, and
the fractional change in transmission AT/T,
caused by introducing a fixed number of inversion-
layer electrons, was measured with a convention-
al Fourier transform spectrometer. ‘

In the absence of the grating, —A7T/T measures
directly the real conductivity, o, of the space
charge layer?®

Reo(w)=z(AT/T) Yo+ Yo+ Yy), (1)

where Y,, Y, and Yy are the wave admittances
of free space, the metal gate, and the silicon sub-



