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The 'direct interaction approximation" of Kraichnan as modified by Kadomtsev is em-
ployed to develop a strong turbulence theory which predicts both nonlinear frequency
broadening and a power law for the spectrum of a two-dimensional convecting plasma.

In this Letter we consider well-developed strong
turbulence in a low-pressure weakly ionized plas-
ma confined in a strong magnetic field Bx subject-
ed to both a gradient in density (Bn/Bz)z and an
electric field E,= —(By,/Bz)z. The electrons and

ions suffer collisions predominantly with the back-
ground neutrals such that 0,»v, and Q,. s v, ,
where 0, , and v, , are the respective cyclotron
and collisional frequencies. The difference in 0
and v between electrons and ions gives rise to a
mean current density Jy resulting from the v,
=E,&&B/8' drift of the electrons. Simon' and
Hoh' have independently shown that this configura-
tion is unstable if Vn ~ V(—ey, ) )0, in exact analo-

gy to the gravitational instability. ' The unstable
fluctuations have the nature of growing waves
propagating in the direction of electron drift, i.e. ,
y -y(z) exp[i(k, y —~t)].

%e shall be concerned here with the nonlinear
development of these fluctuations leading even-
tually to a two-dimensional turbulent state. The
model developed below applies directly to the E-
region ionospheric density irregularities driven
by the equatorial electrojet. ' ' This theory pre-
dicts (i) that the power spectrum of the density
fluctuations 1 {nba n/, l')—:Iz is proportional to Ikl ",
where n ranges at most between 3 and 4, (ii) that
1-„ is proportional. to Iv-, [, and {iii) that the res-
onance broadening of the power spectrum in fre-

Bn/Bt+V nv, =0,

ne(E+v, &&8)+T,Vn+nm, v,v, =0,
—Zn, e(E+v,. && 8) + T,Vn, +n,m, v, v, = 0, . .

V (J.+J,)=0.

(1)

(2)

(3)

(4)

On linearizing these equations about the equilib-
rium n, =N, (1+z/L), dy, /dz =a/(z+L), unstable
fluctuations y =y exp(i[k, y +k, z —{+y„+tyy)t]J,
with k ~ B= 0 and k, L» 1, have frequency and
growth rate given by'

quency, I'z, is proportional to k' " '. If we take
into account that radar observations of the equa-
torial E-region indicate m = 2, then this theory
which relates m to n predicts n = '-,', which agrees
with such ionospheric data as are available and
also with numerical simulations.

It appears to us that Eqs. (7) and (8) which ex-
press the mathematical content of this model
could represent convective plasma motion in a
broad class of experimental configurations includ-
ing large toroidal machines for plasma confine-
ment. Although the sources of the instabilities
are individual to particular experiments the non-
linear interaction terms may be common to them.

Under the assumptions of quasineutrality Zn,.

=n, =n and isothermality, the basic equations for
the electron and ion (Ze) fluids are

&o-„-„=k ~ v, /(1 +~/)

y-„=[(/(1+()]f(Q, /v, ) [k,' v, /O'L (1+P)] —k'C, '/v, . ],
(5)

(6)
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where g = v, v,./0, 0, . These waves are nondisper-
sive. Moreover as their amplitude increases it
has been shown4 that they do not steepen, but in-
stead, they are unstable to a perturbation in a di-
rection perpendicular to their propagation. This
leads to further mode coupling in different direc-
tions and the final spectrum tends to isotropy in
the y-z plane. Because of the lack of dispersion
in these waves it is clear that the weak turbulence
theory of nonlinearly interacting linear modes is
not applicable. A more satisfactory approach is
that based on the "direct interaction approxima-
tion" of Kraichnan. ' For our purpose we adopt
Kadomtsev's development' of Kraichnan's postu-
lates. Combining Eqs. (1)-(4) we obtain

Sn/8&+ (p x x Vy) ~ Vn =DV'n,

(Ppx x Vcp) ~ Vn+p(Vy Vn+nV'y) =O'V„', (8)
j

with

Here Ltl ~ and pH are the Pedersen and Hall mobili-
ties and D~ is the diffusion transverse to the mag-
netic field.

Equations (7) and (8) can also be written in the
Fourier representation as two coupled equations
for n& and pg, where

fk =(2w) .'fd'md' ff(x, t) exp[i(k x —vt)].

To second order in ~ we obtain, following
standard techniques,

((u —(ok)nk = fd'k'd(a)' Vk k nk 7, .nk

where &uk =~k„+iy„ is given by (5) and (6) and

Vk -k, =[k'.x xv, —p (k' ~ v, + i(k'C, )'/v, ](k —.k') x x ~ k')/(k')/(k' ~ k'). (Qa)

One of the main consequences of strong nonlinear interaction is the self-damping of the modes I'&
which could far exceed the linear damping y], . The density Fourier components ~ „are assumed to
form a statistical ensemble with random phases. Following Kadomtsev's development' we arrive at
the Fourier-transformed version of Kraichnan's equations, viz. ,

I& —&k+1 k, I'Ik, = 2fd ~'d~'I~k, k I Ik',

z fd2yid&I ~k.k-k'~k-k'. kIk'tu'
(0 —(O' —GP„, p. +I I, gr ~ ~r '

where (nk *nk. ./n, ') =Ik (k-k')5(&u —&u') and &ok k. =Vkk, +Vk-k -k, . Since A, »v„Q,. «v, , $«l, and
P = v,./Q, .(1+()»1, in the application we have in mind, we obtain, keeping terms proportional to P,

mk k „ark ki k= —p'(x xk ~ k')'([(k ~ v,)' —(k' ~ v, )(k v, )]/k'(k —k')'

+[(k' ~ v, )(k ~ v, ) —(k' v, )'] /0 "(k-k')'- [0"(k ~ v,) +0'(k' v,)](k' ~ v, )/0'0 "j. (lla)
The self-cons. 'stent solution of Eqs. (10) and (ll) for Ik and I'k is a formidable task. We shall first
assume I],~ as given and solve for iI'& =-I'& „~. In this we are assisted by the numerical solutions of
Eqs. (7) and (8) obtained by McDonald et al. ' and Ferch and Sudan. ' These calculations show that
fd+Ig cck " with n = 3-4.' We therefore approximate Ig by

Ik v =Iong(R —Nk) &

where g(~ —~k) is a resonant function which for simplicity we choose to be a Gaussian, (2mI'&') '~'
x exp[- (~ —~k)'/2I'„']; I'„=1 0 Fk d8/2m is the nonlinear width of the spectrum, I„~k ", and k= (k, 8).
Substituting this expression in Eq. (11) we obtain (k" =k —k')

2md8 2, ~ dv
i2

0 (2&I"k r I

(12)
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(13)

In arriving at (12) we have replaced rz- by its angular average 1,- and furthermore taken lrql » I Zql;
Z is the plasma dispersion function. From (iia) and (12) we observe that I'„ is real since Z(fx) is a
purely positive imaginary quantity. Furthermore, since over most of the range of integration of k,
I'„,/I'„. -1, we obtain

r, =4.9f.,dk'k (I, jlr, I) f: (d~ j») f: d~'~-,
,k"~k",k.

Substituting for wz z-mz- I, from (11) and performing the integrations over 8 and 0' we obtain

r„=—4.9(m/2)p k v f„",dk'k'I„. E(k'/k)/Ir, I, (14)

where E(k'/k) can be approximated by —,
' over the entire range of k' jk. We have furthermore adopted

Kadomtsev's correction to the "direct interaction approximation" by taking the lower limit of the k' in-
tegration to be proportional to k with o.sl. On solving for I', from (14) we obtain

irJ=3 4n ' e " Pv k I'2
It is clear from Eqs. (14) and (15) that I', is indeed a negative quantity and furthermore that [r»icclv, ).

Figure 1(a) shows the power spectra from a numerical calculation" of Eqs. (7) and (8) after a steady
turbulent state has been attained; r»/2w as measured from this curve is -2.1 Hz, for k =2m/9 m '.
From the parameters of this calculation p = (0,/v, ) p/(I +()= 22.1, v, = 10' m /sec, (15n/n, ~') = 2mf»", dk kI»
=2.0xl0 ', k =2n/128, k=2m/9, and 8=45, we obtain I" /2n =3.1 Hz with n - —and n=3.2 (this
choice is discussed later). Figure 1 also shows the spectra for the E-region ionospheric irregularities
obtained by radar" at Jicamarca, Peru, for ambient conditions approximately similar to those used in
the numerical computations. The agreement between observed, numerical and analytically predicted
frequency spread, as functions of e, and k, is reasonably good.

Turning now to Eq. (10) we obtain, after substituting for Iz.. . and Iz ~ and performing the &u' inte-
gration,

27r do 27' dg
d&u I- —=- —d'k'

i mt; g, ~'I I ~0' k"
0

"der exp[ —(u —u„) /2(I'„, + I', , )]
~2m( r»'+ r „-)" f((u —a) „) + r «2]

OO 2~ yg 2~ 2 -Ii2 2k2 2 co k'-I' ' dk'k'I' ' — d6'
~ ««~ 1+ ", I I " dk'k'I„ I' 'G —. (16)

nk 0 2~ 0
u'

In reaching (16) we have replaced I", in the reso-
nant term of (10) by the angle-averaged quantity
r» notice that —iZ(ix) varies between 1.77 and
0.93 over the range of integration of k'. Now
G(k'/k) is only. very weakly dependent on k'/k and
we replace it by its average value G which is of
order unity. On substituting for I'» from (15) we
observe that I»~k " satisfies (16) thus establish-
ing the self-. consistency of our assumed solution.

Let the spectrum I, =Ik " extend from k;„ to
Then in the steady state the total power

generated in the unstable range k ~ to k, mulct be
balanced by the power dissipated between k, and
k „.by the damped spectra. Thus

f,',„'"dkk f; dey-, .1„=0. (17)

From Eq. (17) we readily obtain

I'
&max ' &max (19)

From Eq. (15) and the expression for y& we ob-
tain

n/2 3 4&"1/2&-n/4 ~ & s Il/2Q C
max 0

e 2

(19a,)

where k,' = (Pv, /I. P) v, /C, ' is the marginally un-
stable mode. Over the region of strong turbu-
lence, viz. k to k „,the nonlinear frequency
broa, dening I „»y&. However at large k the linea. r
damping y& must eventually dominate since the
power spectrum drops off at large k. %Ye there-
fore postulate that k „is itself set by the condi-
tion where yz becomes comparable to I'~, i.e. , by

k;„" 'k, „' "=k,'(4 —n)/2(n —2), (18) The additional postulate (19) enables us to evalu-
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ate the absolute strength of the spectrum. Thus

(10n/n J') —= 2n f„'.'"d. k k([n, /n J') =2m(™,„'"dkkIk "

( ") Q v v.L ('" ') (~~)
P 6n~n/2 (k L)( 4~) (~)

(2n —4)(1+)) v, C,' (20)

where we have utilized (18) and (19a) to eliminate
I andk-», infavor ofk-. From Eq. (18) we ob-
serve that 2&n & 4. Furthermore radar observa-
tions at 3 m indicate that (In&/n, P) -v, W'™
= 2, although occasional departures from this val-

ue are also recorded. " For this dependence n
=@, from Eq. (20). With this value ofn, L-8 km,
a- 3, and adopting the values quoted earlier for
the other parameters we obtain

(1'n/n. 1')'~'= 250(k . L) 'v, /100,

3~l
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where L is in meters and v, is in meters/second.
It is unreasonable to expect that the spectrum
will be isotropic and retain the power-law depen-
dence for k - L-1. Indeed the matrix coefficients
V~„have been computed on the assumption that
kL»1. For X-,„-L/4 or k I.-25, we obtain
(16n/no1')"'-0. 02 which is not inconsistent with
such observations as are presently available.

In conclusion the theory developed here predicts
I, c)(- k with n = 3.2 consistent with experimental
observations of I,~ v, . In addition it predicts the
nonlinear broadening of the spectrum I'„o-k'~ and

finally it gives a reasonable estimate of the abso-
lute magnitude of the density fluctuations.

We are grateful to D. T. Farley for many use-
ful discussions.
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FIG. 1. Power spectrum Ip ~ vs frequency in HE;
curve s for & =2m'/9 m ' is obtained from numerical
simulation of Eqs. (7) and (8), Ref. 11; curve 0 is from
radar backscatter observations at 16 MHz P =9.4 m),
Jicamarca, Peru, Ref. 12; ~&/2x=0. 9 Hz for param-
eters of curve s; b"/2x is the full width at half-maxi-
mum of the power spectrum. (b) Dots show ('"/2x)/
(8 ln2)' vs k from simulation studies; dotted curve
gives V&/2x vs k and solid line is (~& +p& )

' /2. with
numerical factor adjusted for best fit. At large wave
numbers p& is comparable to I'z in simulation studies.
(c) Dots show (A~/2')/(8 ln2)' 2 vs electrojet drift ve-
locity from radar observations; solid line is I'„//2z with
adjusted numerical coefficient. Notice the exce11ent
agreement with the analytical result ~'& Up.
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Overlap of Bounce Resonances and the Motion of Ions in a Trapped-Ion Mode
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Motion near a separatrix (the boundary between closed and open orbits) is studied both
theoretically and numerically for parameters appropriate to the dissipative trapped-ion
mode. I observe disappearance of an invariant in a stochastic layer surrounding the
separatrix, as a result of overlapping bounce resonances. The fraction of ions lying
within the stochastic layer is large even for a mode of relatively small amplitude.

Dissipative trapped-par ticle instabilities are
thought to cause anomalous transport in tokamaks.
The transport rates are determined by the ampli-
tude of the fluctuating electric field of the nonlin-
early saturated instability. It is therefore impor-
tant to consider nonlinear processes which might
lead to saturation at relatively low levels.

In this Letter I report studies of a nonlinear
process not previously considered, as far as I
know, for the trapped-ion mode. Some stabiliz-
ing effect of this process have already been stud-
ied by us, but estimates of saturation levels are
reserved for publication elsewhere, because de-
tails of trapped-particle instability theory are re-
quired.

The equations of motion which we study describe
other physical situations of current interest. The
equations were first used' to study the one-dimen-
sional motion of a particle in two electrostatic
waves with different amplitudes and phase veloci-
ties. This configuration is of interest in the the-
ory of radio-frequency heating. The equations
were used4 for a tokamak to estimate the fraction
of a magnetic island (due to a. tearing mode) in
which field lines would be braided. In the general
theory of stochasticity, ' study of motion near a
separatrix is recognized as being of fundamental
importance.

We study the guiding-center motion of an ion in
a magnetic field whose amplitude varies sinusoid-
ally, the usual model' for a tokamak of large as-
pect ratio and circular cross section. The inclu-
sion of guiding-center drifts off a field line would
not change the physics of the process being stud-
ied, so we ignore those drifts. The calculations
are thus in the spirit of local theory, in which
radial excursions are assumed to be sufficiently
small. We ignore collisions in order to isolate

H(8, p, t) =Ho(O, p) +e 4(8, t),

H, = (p/ago) '/2M —p, b B cos8, (2)

where p is the momentum conjugate to 8, R, the
major radius of the tokamak, e and M the ion
charge and mass, AB the modulation amplitude
of the magnetic field, and p. the magnetic mo-
ment. Since p, is conserved during the motion,
it plays the role of a parameter here.

A more convenient form of Hamiltonian (2) for
analytic work uses action and angle variables.
We express the unperturbed Hamiltonian H, in
terms of the longitudinal action

Z(H, ) =(2n) 'f p do,
-

which, except for constant factors, is fv~~ ds, in
standard notation. The explicit expressions" for
J and the canonically conjugate angle variable y
involve elliptic integrals and K, defined by 2K'
—= (1+HO/pAB). The variables J and y are defined
in such a way that an ion which changes from
trapped to circulating does not change its J or jo

the effects, including pitch-angle scattering, due
to the electric field of the mode.

A trapped-ion mode causes perturbations in the
motion of the ion, We assume that a single mode
is present, with toroidal and poloidal mode num-
bers l and m, respectively. As the ion moves
along a field line, it feels the potential

C(O, t) = —4 cos[(m -lq)8-&ut+q],

where 0 is the poloidal angle, q the safety factor
on the magnetic surface on which the ion moves,
co the mode frequency, and g a phase angle re-
lated to the ion's initial toroidal angle.

The equations of motion are derivable from the
Hamiltonian
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