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I argue that in a gauge theory of absolute quark confinement two-body amplitudes of
mesons are nonvanishing only on an equal-time plane in the rest frame of mesons. The
vector dominance model of electromagnetic form factors follows as a consequence. The
parton model for inelastic processes would remain valid.

I will argue that a gauge theory of complete
quark confinement leads to a two-body descrip-
tion of mesons which is entirely different from
the conventional field-theoretical picture. I start
from the following postulates: (P1) Color triplet
states have infinite masses' (absolute confine-
ment). (P2) Physical states are invariant under
local gauge transformations. (P3) In spite of P1,
it is possible to use a local quark field q(x) to de-
fine certain matrix elements, whenever such ma-
trix elements are nonvanishing. P3 is obviously
necessary to make any field-theoretical argu-
ments. I believe that P3 could be justified in the
sense of' the correspondence principle, For slD1-
plicity of presentation I will discuss the case of
quantum electrodynamics (QED), indicating later
how to generalize to quantum chromodynamics
(QCD).

In QED, P1 is replaced by Pl'. States with
quark number + 1 have infinite masses. An im-
mediate consequence of P1 or P1' is that the
Bethe-Salpeter (B-S) amplitude for a quark-anti-
quark system

X"(I,2) =(+., [q(1)q(2)],~),

of )t (1, 2), which is an integral of bi+~(x, -x„
M„') over the intermediate-state mass M„'. Such
a function vanishes exponentially in the whole
spacelike region as M„'-~. Hence the Wick-ro-
tated amplitude will vanish everywhere.

In order to formulate P2 we need to specify the
gauge. We will take the "spacelike" gauge n&A"
=0, where n& is a unit timelike vector. The Cou-
lomb gauge is not appropriate because all com-
ponents of the electric field, transverse as well
as longitudinal, will contribute to the confinement
potential. It seems difficult to translate the re-
sults that we obtain into the Lorentz or Gupta-
Bleuler gauge, which would be possible if there
were a unitary transformation linking the gauge
that we use with the latter. The formulation in
the Lorentz gauge is an unsolved problem. An
additional advantage of the spatial gauge is that
the canonical quantization can be done in a
straightforward way.

For one-hadron states, a natural choice for n&
is the energy-momentum vector of the hadron,

p&. Thus, without loss of generality we will
hereafter take the rest frame p = 0, and there we
have A, =O. In this gauge we will have a limited
local gauge transformation

where [ ], denotes the time ordering, vanishes.
In fa.ct, inserting Q„4'„)(4„between q(1) and q(2)
for ty & t2 we obtain the spectral representation

A (x) =e "X(x)e "=A(x}-V~(x),

q'(x) =e' q(x)e '~ =e " &'&q(x),
(2)
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where the generator A is given by

A= fo(x)~(x) d'x,

with

o(x) = p(x) —V E(x).

Here p(x) is.the charge density p(x) =eq (x)q(x);
and E(x) =-A(x) is the electric field. A.(x) must
be time independent, i.e. , X=0. The field equa-
tion insures that o(x) =0, and the postulate P2
states simply that

o(x)4 =A+=0. (5

In other words, P2 requires that Gauss's law
holds as a subsidiary condition on any physical
state. I stress that Eq. (5) does not select a
class of particular states. In fact, it is easy to
show that by a certain unitary transformation,
Eq. (5) reduces to a single condition on the vacu-
um of the longitudinal field, V.ECp 0 which can
be trivially satisfied.

The B-S amplitude (1) is not invariant under
local gauge transformations (2) in the gauge used
here and therefore vanishes without invoking P1'.

) Thus, we have to adopt a gauge-invariant ampli-
tude, an immediate choice being

yc(1, 2)=(4'„[q(1)exp( ~efA-('x) ,dx)q(2)]„C'}, (6)

where C denotes a path along which the integration is taken. It may look very peculiar that we have to
abandon the B-S amplitude in the ordina. ry QED, but it is nothing but a peculiarity of the present gauge.
In fact, if we take as Ain (6) the longitudinal part of it, A~, Xc(1, 2) is still gauge invariant. The line
integral is then path independent and integrable. We can show easily that the amplitude yc(1, 2) reduces
to the P-S amplitude in the Coulomb gauge, which would vanish if we invoke P1. In the normal phase
of the @ED, Pl is not valid and the amplitude (6) with A=A~ is perfectly legitimate. If, however,
there exists a confinement phase in QED, as suggested by some confinement models, "then we must
necessarily include the transverse part of A in (6) to avoid the vanishing of the amplitude.

With the full A taken, the amplitude (6) depends on the path C in an essential way with Heisenberg
operators continuously distributed along the path C. Inserting Q„4'„)(4'„at a single point on the path
does not produce an infinite time oscillation present in the B-S amplitude. Yet }to(12) vanishes unless

t2 ~ To see this, we divide the line integral into N inf initesimal sections. For t j & t„we use a para-
metric representation of the path C, x=x(&) with &= t t,. Then—by introducing g„=(n/N)(t, —t,) and x„
=x(f„), we have

)tc(i, 2) = Iim(4', q(l)g exp[-ieA(x„, f„)~ (x„—x„,)]q(2)4).

where

= f d&zo(&)e ' '

~(E) = Z[{n„},{x„}]5(Z—Q Z.„/X).
n„} n= 1

In the above, o.„denotes intermediate states in-
serted at the nth junction. t =t, -t„and I have
taken t, =0 for simplicity. M is the threshold for
the intermediate states and the limit M - ~ must
be taken in accordance with Pl'. In this limit
y(.-(l, 2) will vanish for t, —t, o 0 by virtue of the
Riemann-Lesbegue lemma, provided that m(E)
satisfies certain convergence conditions. What

Now the time dependence can be factored out by
using ~(x„,&„)= exp(i&„H)A(x„, 0)exp(-i&„H) and
inserting a complete set of states in between eve-
ry pair of neighboring operators. The result is

N

(1,2) = E[{o(„},{x„}]exp(-it++ „/f)t)
))'n } n= 1

!
happens for t, =t, depends critically on the be-
havior of the weight function zo(E). In the case of
the B-S amplitude (1), w(E) has an oscillatory
factor sin[(E' Mr)'~'] (r-=x, -z,), so that it van-
ishes even for t, =t, . I assert that such an oscil-
lation is very unlikely for the amplitude (6). In
fact, for a straight-line path C one can extract
the corresponding oscillatory factor in I", which
is exp(ix P„p„„/N). The average momentum

p „/N
n= 1

will not grow as fast as the average energy E,
contrary to the case of N= 1. Thus, barring the
oscillation of zv(E), I maintain that the amplitude
gc(l, 2) is nonvanishing only on the equal-time
plane in the rest system. If furthermore m(E)
-E~ as E - ~, then

lim )VS ~ ~(1,2) cc (it) 'e'~~,
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so that with an appropriate normalization we may write }(c(1,2) ~ 6(t, -f,). I will a.ssume in the follow-
ing that in fact this is the case. This behavior of the amplitude does not violate the relativistic invari-
ance. If we move to another Lorentz frame p&0, the equal-time plane is no longer equal-time, but A,
no longer vanishes either. The line integral in (6} must be replaced by j2'A„(x)dx" and the simple fac-
torization of the time dependence such as (7) is no longer possible. Thus we arrive at a covariant ver-
sion of the above statement,

Xc(1,2) = 6(p (x, —x,)) exp(ip x,)pc(x, —x,). (8)

Our picture of the two-body amplitude (8) may be related to the string-model picture' where a string
sweeps a two-dimensional strip in space-time. However it is not obvious how to relate them.

The vector dominance model of the electromagnetic form factors' is a consequence of the four-dimen-
sionally flat structure of hadrons as expressed in Eq. (8). The quark and the antiquark, restricted to
an equal-time plane in the rest frame of the initial meson, cannot adjust themselves instantaneously
with emission of a photon to an equal-time plane in the rest frame of the recoil particle. Thus, bare
electromagnetic vertices for elastic and inelastic one-particle transitions should vanish. On the other
hand, a three-meson vertex is finite since the overlap integral

fd4x, d'x, d'x, 6(p, (x, -x,))6(p, (x, -x,))&(p, (x, -x,))
is nonvanishing. Therefore, a photon can couple to two mesons only through vector mesons. This sup-
pression of the bare electromagnetic vertex obviously fails for inelastic processes involving more than
two hadrons in initial and final states. The amplitude for such a process would involve a nonvanishing
overlap integral like (9) with a photon emitted at one of the points x;. Hence we may expect that the
parton model for deep inelastic processes would remain to be valid.

A gauge-invariant two-particle amplitude for mesons in QCD, corresponding to (6), is given by

ii~((, 2) =(C„Tr'[exp(ii, I A(x) dx)i(1)q(2)],O), (1o)

where
B

X(x}= P-.'~. A (x).
a= 1

(X,) is a set of eight color-spin matrices. q(1)q(2) is regarded as a matrix in spinor indices, flavor
SU(4) indices, and color-spin indices. Tr' represents a trace with respect to the color-spin, project-
ing out the color-singlet operator. The ordering is now along the path C, and is essential because of
the presence of the color-spin matrices X,. The previous argument for }(~(1,2) can be repeated with-
out any change.

A gauge-invariant amplitude for baryons in QCD is given by

yc c c (1,2, 3; Z) =e),.~(40, Uc (Z, 1)Uc '(Z, 2)Uc (Z, 3)4),
where

U~ (Z, 1) = [exp(iaaf;A(x) ~ dx)j,q(1). (12)
C„C„and C, are the paths connecting the point Z with 1, 2, and 3. U represents ith color-spin com-
ponent of U. It is not difficult to prove the gauge invariance of the amplitude (11). It will again vanish
unless t, =t, =t, . How to obtain the two-body or three-body wave equation to determine the energy
eigenvalue of hadrons starting from the amplitudes (10) and (11) will be discussed elsewhere.
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