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Recent observations of radiation-stimulated superconductivity above the thermodynam-
ic transition temperature reveal the existence of a first-order phase transition between
a normal and a superconductirg state. In this Letter, a Langevin equation for the order
parameter is derived, which is appropriate for the nonequilibrium steady-state process
under consideration, and which explains the observed discontinuous phase transition.

The prediction of Eliashberg' on radiation-
stimulated superconductivity seems now to have
found acceptance from the experimental point~'
of view, particularly since superconductivity
above the transition temperature has been ob-
served' in a, homogeneous material. It is mell
known that thermally excited electrons and holes
oppose superconductivity; this exp1.ains the phase
transition at finite temperatures. Less known,
however, is the fact that excitations near the gap
edge are more detrimental to superconductivity
than those which are off the edge Quite gener. al-
ly, a classical radiation field tends to spread the

energy distribution of the excitations and thus
remove them from the gap edge. In essence, this
is the explanation of radiation-stimulated super-
conductivity.

In a certain range of temperatures, Eliash. —

berg's theory allows three solutions of the gap
equation, a situation which reminds us of van der
Waal's theory of real gases. Furthermore, Klap-
wijk, van der Berg, and Mooij' have observed a
discontinuous transition between the normal and
superconducting states, including hysteresis,
which is similar in appearance to a first-order
phase transition. However, standard thermody-
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namic stability theory cannot be applied, as these
are nonequilibrium steady states, 4 and therefore
it is necessary to resort to techniques which can
be found illuminatingly reviewed in a recent arti-
cle by Haken. ' This means that we have to con-
struct a Langevin equation for the order parame-
ter which includes time dependence and random
force, both of which can be found by generalizing
Eliashberg's theory. The origin of the random
force is the fluctuations of the quasiparticle oc-
cupation numbers. This equation allows us to
calculate the stationary probability distribution
of the order parameter, which will be written in
the form W(b. ) cc exp[ —F(b, )/T, ]. Obviously, the
quantity 5 generalizes the free energy concept to
nonequilibrium steady states, and allows us to
answer questions on the stability of nonequilib-
rium steady states in a most familar way.

As an introduction, I briefly review the theory
of Eliashberg. This theory is based on the BCS
gap equation,

&/&= J«p(d/2Ep)[1 —2(np)], (1)

where E~ = (e~'+b, ')'~'. Furthermore ny is the
quasiparticle distribution function and (np) its an-
gular average Intro. ducting np =n, (E~)+bn»
where n, is the Fermi function, and

case, we may linearize the collision integral,
(np)", with respect to 6np, and we may also re-
tain only the leading contribution to the radiative
term, (n p)", which is then a functional of n, (E~).
Thus, Eq. (4) becomes an inhomogeneous, linear,
integral equation. It is important now to realize
that the most important part of 5np is confined to
a rather narrow energy range E~ ~ O(6) «T,. In
such a case, it is possible to approximate the
collision integral by th'e relaxation approxima-
tion,

(n;)""= - 6n-/~ (5)

where v., is the inelastic electron-phonon colli-
sion time at the Fermi level (and at T,).

Inserting the solution 5n
p

of Eq. (4) into Eq. (2),
we obtain X&" ~, which is proportional to the ab-
sorbed radiation power [and which is denoted by
(b /T, )F in the second article of Ref. 1].

The normal state with b, =0 is always a solution
of the Ginzburg-Landau equation (in which X has
been replaced by the definite form X(" i). Super-
conducting-state solutions with 6 4 0 can be found

from a graphical construction as shown in Fig.
1. There is one solution for T &T„ two solu-
tions for T, &T &T~, and no solutions for other
temperatures. '

~-, =(~-,) "'+(~-,) ~=0, (4)

where the time rates of change take into account
the interaction of the quasiparticles with phonons
(which also play the role of a heat reservoir) and
with an electromagnetic radiation field. Note
that the time rates of change include scattering
as well as generation and recombination of quasi-
particles.

Close to T„spectacular phenomena can be ob-
served even for small radiation power, and hence
for small 5np as well. Assuming this to be the

X = —

fdic,

(1/E~) (5n p), (2)

one can, provided that b, «T„ transform Eq. (1)
into an equation of the Ginzburg-Landau type,

[(T,—T)/T, —0.106(a/T, )'+ X]a = 0,

where 0.106 = 7f (3)/8m'. The above relation dem-
onstrates clearly that a shift of quasiparticles to
higher energies does, indeed, stimulate super-
conductivity.

In the stationary case (and also for a spatially
homogeneous situation), Eliashberg calculates n~
from a rate equation (Boltzmann equation) of the
form

0
Q2 p2 2

FIG. 1. The intersections of the straight line (T, -T}/
T, —0.106& /T~2, with the curve g

" determine the
solutions &, and 4~ of the stationary Ginzburg-Landau
equation. Note the kink in g~" ~ at 24=v, where v is
the radiation frequency. For a given radiation power,
there are superconducting solutions only if T &Tz,
where (Ts-T~)/T, is marked by rp on the ordinate.
The inset shows the free energy & which reveals that
the normal state is globally stable. Equibalent to +(&2)
& 0 is the condition:. t, &.a, for the two areas.
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~, = 3.7(T,/~)~„ (7)

Using this theory of Eliashberg as a foundation,
I discuss the stability of the solutions found
above. This necessitates that the quantities de-
pend on time. For instance, np of Eq. (4) now

differs from zero; specifically,

n-, =n, '(E,)(a~/Z, ) + 6n;. (6)

In the following, I will exploit in an essential way
the fact that close to the transition temperature
the order parameter changes only slowly in time.
For instance, its relaxation time in the vicinity
of thermal equilibrium states, '

in time.
A criterion for absolute stability can only be

found if one includes the finite fluctuations of X.
(Instantaneous values of fluctuating quantities are
marked by a caret, and the average value by a
bracket. Hence, ((y)) = y). Since for fermions'

((iip iii, )) =

I
(Q)

v

we find on the basis of Eq. (2)

(((6X)'))= « (X)')& —j(' = (2N. ~~) 'r/y. &'p '~ 1;(I- ~ p)

= ~/6N, gt, (10)

is very long in comparison with the quasiparticle
relaxation time Tp Therefore, we may neglect
6n& in Eq. (6); this corresponds to the situation
where the quas iparticle occupation numbers n-

P
follow adiabatically the changes of the order pa-
rameter. 8

Mathematically, the term n, '(b, a/g ) plays the
role of an inhomogeneous term in the linearized
Boltzmann equation. This term is rather com-
pact with respect to its energy dependence, This
allows us to solve the linearized Boltzmann equa-
tion in the relaxation approximation and to calcu-
late easily

(6)

Inserting &,
=y('~)+X( ) into Eq. (3), we obtain a

time -dependent Qinzburg- Landau equation which
we may use to check Eq. (7). Also, it is not diffi-
cult to prove that in the temperature range T, & T
&7'~ the state with order parameter 6, is abso-
lutely unstable, since any infinitesimal fluctua-
tion will grow exponentially in time. On the other
hand, the normal state with Do=0 and the super-
conducting state with 6, are locally stable, by
which I mean that infinitesimal fluctuations decay

where (2NOQ) 'Q-, . . . has been substituted for
Jde~. . . and where 0 is the volume of the system.
Evidently, only states with E~~O(&) «T, contrib-
ute to this expression and, hence, n-= —,', inde-
pendent of the radiation power within the limits
set up previously. Again, we meet here a situa-
tion where the relaxation approximation may be
used in calculating the time dependence of the
fluctuations of the occupation numbers. It fol-
lows that To is also the correlation time of 5X,
which means that its power spectrum is given by

&(!6y l'»„= I.», /(1+ ~ T ') J(&( y6)' j).

Since 5y is a sum of a very large number (~ Il) of
independently fluctuating quantities, it corre-
sponds to a Gaussian process which is completely
specified by Eq. (11). As already pointed out, the
order parameter varies slowly in time. Hence,
w- T~ '«T„and the term co'7,' may be neglected
in Eq. (11).

Inserting y =y'~~+y( '+IX into Eq. (3), we ob-
tain for the instantaneous value 6 of the order pa-
rameter an equation which couples the motion of
6 to a random force with an effectively white
spectrum. Explicitly, this nonlinear Langevin
equation is as follows:

(v7, /4T, )St), =
I (T, —T)/T, —0.106''/T, '+ y""']a+ (vt ~,/4Nori)'"q(t),

where (( q(t)q(t')) j = 5(t —t').

Following the standard procedure, '0 one obtains the stationary probability distribution W(b. ) of the
order parameter,

(12)

with

W(b, ) = const(2Toh) "2exp[ —F(b, )/T, ], (13)

F(&) = —2NOQ f dt), '!(T, —T)/T, + 0.10 b6, "/ ,T+2y("+)] t), '. (14)
/

Obviously, the quantity 5 represents a generalization of the Ginzburg-Landau free energy to nonequilib-
rium steady-state situations, and it agrees with the usual. expression when X

"~ = 0, i.e. , in the absence
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of radiation.
Since f is proportional to the volume Q, the

prefactor (2~,b,)"' is without importance, and
that state is almost certainly realized which has
the smallest value of 5. We may call such a
state one of global stability. In the example of
Fig. 1, we have F(~,=0) =0&5:(b.,), which means
that the normal state is globally stable. At the
same time, the superconducting state is locally,
but not globally stable, and such a state is usual-
ly called a metastable state. For temperatures
somewhat lower, the stability assignment for
these two states is just reversed.

It is well known that the existence of metastable
states does lead to a hysteretic behavior in the
transition between two phases; in other words,
the phenomena of supercooling and superheating
are intimately connected with the appearance of
metastable states. This is what has been ob-
served by the authors of Ref. 3.

For the sake of completeness, I wish to add
three remarks. Firstly, in their theory of a las-
er-irradiated superconductor, Owen and Scala-
pino" have assumed that the recombination rate
of quasiparticles is so small that it can be ne-
glected. Then a thermodynamic theory can be
constructed where the quasiparticle number ap-
pears as an additional variable. In the present
case, however, recombination processes occur
at a large rate —I/~, which exclude the applica-
tion of such a theory. Secondly, electromagnetic
radiation will stimulate superconductivity even
above the thermodynamic transition temperature,
since the troublesome generation of quasiparti-
cles (which is possible if 2b. is less than the ener-
gy of the radiation quanta) is suppressed by the
coherence factor 1 —b'/EE'. In contrast, the co-
herence factor for acoustic radiation is 1+6.'/
EE, which favors quasiparticle creation. Third-
ly, it is possible to generalize the considerations
to cases where the order parameter also varies
in space. Then the Ginzburg-Landau equation ac-
quires the usual "kinetic energy" term, and the
stochastic force is 6-correlated in both space
and time.

In conclusion, I wish to remark that radiation-
stimulated superconductivity provides an addition-

al example of phase transitions in a nonequilibri-
um steady-state system.

I acknowledge gratefully a stimulating discus-
sion with Dr. T. M. Klapwijk and Dr. J. E. Mooij
who brought my attention to this problem.
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