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Based on a Green's function formalism, a high-temperature series expansion technique
applicable to systems with complicated energy levels is developed. The application of
the method to magnetic systems with crystal fields is discussed. As an example, we
have obtained the high-temperature series expansion of the susceptibility for a spin-1 fer-
romagnet with anisotropic exchange interactions and with a uniaxial crystal-field poten-
tial.

In this Letter we present a high-temperature
expansion technique which is applicable to sys-
tems with complicated energy levels. The orig-
inal motivation for this research was to seek an
accurate method to estimate the crystal-field ef-
fect on the critical temperature in real Physical
systems such as rare earths and actinides. In-
tensive research on these compounds has been
carried out for twenty or so years. ' Indeed, with
today's experimental techniques, especially with
the advancement of neutron-scattering spectros-
copy, it is no longer a difficult task to measure
accurately the critical temperature and the crys-
tal-field energy scheme of a compound. In fact,
even the exchange-interaction parameter can be
accurately deduced. The theoretical part of the
research, however, seems to lag behind in some
respects. For example, when it comes to calcu-
lating the critical temperature, the mean-field
approximation is used even though the accuracy
of the results is known to be very poor. Recent-
ly a Green's-function approach' and a correlated
mean-field method' have been proposed, and cal-

culations of critical temperatures for spin sys-
tems with a uniaxial crystal-field potential of
second degree have been carried out. The criti-
cal temperatures thus obtained are presumably
quite accurate. It is not easy, however, to as-
sess the accuracy of the results so obtained ex-
cept by comparing them with the known values,
nor is it a simple matter to carry out the calcula-
tions to higher orders.

Up to date the most accurate estimations of the
critical temperatures are those made by high-
temperature series expansion techniques. Such
calculations not only provide critical tempera-
tures accurately (generally within 1% uncertain-
ty), it allows estimations of other critical param-
eters if the series is sufficiently long. The ap-
plications of the high-temperature expansion tech-
niques, however, have been limited to simple Is-
ing and Heisenberg models. It is therefore high-
ly desirable to develop a general high-tempera-
ture series expansion technique applicable to a
more general Hamiltonian such as that which con-
tains a crystal-field potential.
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Our high-temperature series expansion method
is based on the Green's-function diagrammatic
formalism for complicated level systems intro-
duced by Yang and Wang' recently. It is different
from the high-temperature expansion technique
commonly used, but can be classified as a linked-
cluster expansion method. The formalism is
completely general and can be applied to other
physical systems as well as magnetic systems.
For convenience of presentation we still consid-
er a magnetic system such as a rare-earth com-
pound, with a Hamiltonian

K =P, V„Q,~J-„R,~ 5.,.-K Q 5, ,

where V„is the crystal-field potential on the ith
ion and K is the external magnetic field; the ex-
change pair interaction is represented by the sec-
ond term with the double sum. X denotes the to-
tal angular momentum in the case of a rare-earth
ion. If we assume a ferromagnetic ordering along

the z axis, we split the Hamiltonian into two
parts:

Ko =+[V~ —2Z(OXS'& -h]s)' (2)

K,=-p;;J„fs,'s; +(s -&s'&)(s,'-&s'&)],

—PE, = in+ „exp(-Ps„), (4)

where e„arethe eigenenergies of Ko and P = (kB
x T) '. The corrections to E, when K, is restored
can be easily shown' to be

where &S') is the self-consistently determined
ordering parameter and J(0)=Q,J„.It is a sim-
ple matter to obtain the eigenfunctions and eigen-
energies of K, which is a sum of single-body po-
tentials. X, describes the correlations of fluctua-
tions. Ignoring K, and solving 3CO we obtain re-
sults in the mean-field approximation; the free
energy I'0 is

—P~=Q —,f, dr, f d~, . . . f d7'„&TPC,(vPC, (v, ) ~ ~ K,(7„)&,,
g-y S ~

(5)

where the angular brackets denote the canonical
thermal averages over Xo. The subscript c de-
notes the cumulant part of the ~-ordered product,
or, in the diagram analysis, the contribution of
the connected diagrams. Equations (4) and (5)
constitute a series expansion of the free energy
in powers of PZ from which other thermodynam-
ic quantities can be obtained. To compute 4I' we
need a method to evaluate the thermal averages
of the &-ordered products of spin operators. The
method of Vaks, Larkin, and Pikins' is not ap-
plicable because the inclusion of the crystal-
field potential in the unperturbed part of the Ham-
iltonian destroys the simple v dependence of spin
operators in the interaction representation. A
generalized scheme has been furnished recently
by Yang and Wang. ' They used the standard ba-
sis operators L„„=)m&&ni, whi-ch transfer an ion
from the nth level to the ~th level, to represent
each spin operator. Because of the simple & de-
pendence of I„„(7)in the interaction representa-
tion a Wick-like theorem is possible. The price
one pays is the effort in handling a greater num-
ber of operators, especially for large spin.

Employing the method of Yang and Wang, ' the
terms given in Eq. (5) can be represented by dia-
grams, which are constructed with the "semi-in-
variants" &T,S,"S;s.. .&, and the exchange inter-
action lines connecting S,.' to S&' or S,' to S,.'.

The semi-invariants are evaluated in the stan-
dard basis operator representation. As a conse-
quence, each diagram may be more conveniently
considered as consisting of a set of subdiagrams. '
All the diagrams are evaluated in the Fourier
space.

The rules for finding —PAF„which is the term
with (P J)" in Eq. (5) are as follows: (I) Construct
all diagrams with n interaction lines joining the
various semi-invariants. (2) Evaluate the semi-
invariants by first replacing each spin operator
by a linear combination of standard basis oper-
ators and then applying Wick's theorem to the lat-
ter operators. It will be more convenient at this
point to represent the original diagrams by sets
of subdiagrams. ' (2) Attach a factor p J(q) to
each interaction line, J(q) being a, Fourier trans-
form of J,, The momentum q and frequency +„
should be assigned to an interaction line or a
propagator in such a way that conservation of mo-
mentum and of frequency hold at each vertex.
(4) Sum over all momentum and frequency vari-
ables. (5) Multiply the sum by the weight factor
P/n!, P being the number of topologically dis-
tinct diagrams obtainable by permuting the in-
dices of the diagram.

As an example of application, we calculate the
high-temperature series expansion of the sus-
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ceptibility for a spin-1 ferromagnet with a uni-
axial crystal-field potential. The Hamiltonian is

K = -Dg(S,')' Q, )Z),(S)'S,'+RS)+Sq ) (6)

Here we also allow anisotropic exchange interac-
tion, but we assume a magnetic ordering along
the z axis below the critical temperature 7.',. For
simplicity, we also assume that the exchange in-
teractions extend to the nearest neighbors only

(this restriction can be easily removed). It is
convenient to write the susceptibility y in the
form, y '=g, ' —2'. The high-temperature ex-
pansion of y, is then

x./x. = Z c (t)(1+t/2) "(2pD)

where the crystal-field-only susceptibility X,
= p(1+t/2) ', x = p J, t =e, and the coefficients
to the fourth order in P J are

Coo = 1, C,'=z(-4+t) + 2R'z (- 2t +t'), C,'= 2R'z (- 1+t'),

C,0=3z(16 —8t+t )+2z y3(-4+t) —2R zt +7'R z ys(2t+t3),

CS, =2R z(4+t —2t')+Rz y3(-6t+4t —t'),

C3 =2R z(-2-t+2t +ts)+R3zsy3+R z y3( 4+7t-+4t -7t~),

C~o= ~z(-256+ 168t —30t +t )+2z (32 —14t+t )+2z'ys(16 —8t+t )+4z y4(-4+t)
+R'[—,z (- 6t + 29t' —2t') + ,'z'(24t ——16t'+ t') + &z'y, (- 6t —13t'+ t')]

+R [ Bz'ys(-1St +7t +2t3)]+R~[~z(18t —35t'+32ts)

+~z (-18t+35t -32t )+~z y4(10t+9t +10t'+t )],
C„=R'[2z(-8+ 9t' -t') +z'(16 —10t —31t'+4t') + 3z'y, (8+2t —3t')]+R'[2z'y, (18t -t'+4t')]

+R4[—',z (Gt —17t'+ Bt') + gz'(12t + 22t' —22t'+ 3t ) —pz'y~(6t + 7t' —2t'+ t')],
C~ =R'[-4z(4+t'+t')+2z'(16+ 6t -t')+2zg, (- 16-6t+t')]

+R3[zsy3(16 —54t —13t + 34t —t )]+R [z(- 8 —34t +6t —20t'+ 5t~)

+ —,'z'(8+82t —117t'+62t'- lit ) ——,z y, (30t —69t'+38t'- 5t')],

C~~=R'[4z(6+t —7t'-t3+t4)+2z'(- 16 —6t+ 17t'+6t3-t )

+ 2z y~(16 + 6t —17t - 6t +t )] +R [2z y3(- 8+ 10t + 15t —1I - 7t~)]

+R [z(20+54t —43t -54t +23t )+2z (4 —36t+22t'+36t'-26t4)

-z'y, (12 —34t+ 13t'+ 34t'- 25t')] .

Here z is the number of nearest neighbors of an
ion; for the three cubic lattices sc (simple cubic),
bcc, and fcc, respectively, we havez =6, 8, and
12. y„=N 'P, y„"with y„=z 'QT;exp(ik 5) (8
are vectors connecting an ion to its nearest-
neighbor ions). For sc, bcc, and fcc, respec-
tively, y, = 0, 0, and 4z" and y4 = 15z, 27z ',
and 45z"'. If we write

x/x. =Z.~. (PD)~",

then

ao = 1, a, =2z(1+t/2)

a, =C, +a, , a, =C, +2a,C, +a, ,
2 3

a4=C4+2a, C, +Sa, C, +a, ,

where C„=(1+t/2) "Q (2PD) C„.

One can use the standard ratio method' to esti-
mate the critical temperature T,. We find that
for all three lattices T, should be accurate to
within 2/0 of the exact value. (For fcc, the un-
certainty is less than 1%.) Figure 1 shows, for
the case of R = 1, k~T, /Jz as a function of D/Jz.

To conclude, we stress that our method not on-
ly allows the linked-cluster expansion be per-
formed for noncommuting operators, but is ap-
plicable to any complicated level system. Since
the crystal-field potential can be included in the
unperturbed part of the Hamiltonian, the strength
of the crystal-field is unrestricted, Neither is
the range of pair interaction limited since the
quantities entering the calculation are sums in
the reciprocal space of products of J(q) and they
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FIG. 1. Plot of critical temperature vs single-ion

Bnisotropy strength for the spin-1 Heisenberg ferro-
magnet with easy-axis single-ion anisotropy, in sc,
bcc, and fcc lattices. The curve showing the values in
the molecular-field approximation is included for com-
parison.

can be computed analytically or numerically with-
out difficulty. With all these flexibilities the
method is up to now the only suitable one for the
analysis of rare earths and actinides.

Work on higher-order terms of the spin-1 sys-
tems reported above and on a singlet-triplet mod-
el which can be extended to discuss Pr,Tl and
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A superconducting microbridge has been used as a probe to detect quasiparticle diffu-
sion currents and "heating", produced by a phase-slip center (PSC) in a second micro-
bridge. The critical current of the detector is modulated by the voltage V&& across the
PSC. This modulation provides a measure of quasiparticle current I@ thru the PSC and

gives 1&=Vpsc/Ro for low voltages, Ro being the high-current differential resistance of
the PSC.

The dynamics of the voltage-sustaining state in
thin-film superconducting microbridge weak links
is poorly understood in contrast to Josephson tun-
nel junctions, and, hence, is the subject of much
current investigation. These microbridges are
inherently nonequilibrium devices, with their
voltage-producing state being the result of a peri-
odic collapse of the order parameter and its sub-

sequent recovery to a state with a change of 2~

in the phase difference across the bridge. This
process is referred to as a phase slip and the
microbridge as a phase-slip center (PSC). Dur-
ing these oscillations both the pair and normal-
electron, or quasiparticle, densities and currents
are out of equilibrium. Many of the properties of
the bridge such as its current-voltage (I-V) curve
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