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In charge- or spin-density-wave systems, interaction between Landau levels and many-
body effects produces nonlinear de Haas-van Alphen oscillations. This yields, inter alia,
frequencies which are difference frequencies between ordinary oscillations with cyclo-
tron mass equal to the sum of the ordinary masses. The new oscillations may have an
amplitude as large as 10% of the ordinary ones, but they are in a new region of the spec-
trum where they can easily be detected. The effect is larger for weakly stable desntiy
waves.

There have been recent measurements of the
de Haas-van Alphen"' (dHvA) and the de Haas-
Shubnikov' effects in transition-metal chalcogen-
ide layer compounds. Since it is known that these
substances have charge-density-wave (CDW)
ground states, it is of great interest to explore
the interrelationships between the quantized Lan-
dau levels and the CD%'s.

The usual theory"' of the dHvA effect shows
that, for a given band structure, each extremal
closed cross section of the Fermi surface gives
rise to a mell-defined frequency in the oscillatory
free energy and hence in the magnetization and
magnetic susceptibility. The study of the dHvA
spectrum of a given metal serves thus as an in-
valuable tool in determining its Fermi surface.

The classical theory of the dHvA effect"' pre-
dicts that each frequency appears together with
its higher harmonics, but, for noninteracting
electrons, there is no mixing of frequencies. For
interacting electrons, Shoenberg' and Pippard"
have shown that, since the electrons experience
the total magnetic induction B rather than the ap-
plied field H, a nonlinear equation for the mag-
netization appears, with its attendant frequency
mixing. This magnetic interaction effect has
been observed in various metals. ' "

The presence of either CDW's or spin-density
waves" "gives rise to another mechanism for
the nonlinear coupling of dHvA frequencies. In
the presence of stable density waves, the elec-
tronic spectrum, i.e. , the energy-k-vector rela-
tionship for quasiparticles, is determined self-
consistently by the many-body collective proper-
ties of the metal. These properties manifest

themselves through an energy-gap parameter ~
which satisfies a nonlinear integral equation. In
the presence of a magnetic field H the kernel of
the integral equation is modified. Therefore,
through A and the one-electron energy spectrum,
the dHvA effect is also modified with the appear-
ance of a new, nonlinear behavior. In particular,
it is possible and likely that in CDW ground-state
systems, observed small frequencies are in fact
differences between ordinary dHvA frequencies. '
If interpreted as normal dHvA signals, these dif-
ference frequencies would correspond to small
cross-sectional areas of the Fermi surface which
do not exist in the actual case.

In the absence of a magnetic field, the trial
free energy of a CDW system, Ii~~(h), is min-
imized by the equilibrium value &c of the energy
gap (order) parameter so that

where F„ is the free energy of the normal state.
The trial function Ec(b, ) satisfies the stability
conditions

ln (2) the tluantity p is a density of electronic
states at the Fermi level defined below and the
equation defines the dimensionless positive num-
ber 0. .

In the presence of a magnetic field, and neglect-
ing both Landau diamagnetism and electron spins,
we have
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where the last term is responsible for the dHvA oscillations. If we now assume cylindrical Fermi
surfaces (in the spirit of the two-dimensional properties of the layer structures"") we obtain

F „(b.,H)= g p(-1)"hh, k, TV '
sinh(2m'k!! Tm;/hu), )

where i indicates extremal (closed) cross-sectional areas A, (b, ) of the Fermi surface with effective
cyclotron mass m, (b) measured in units of the free-electron mass m;

(4)

v indicates the harmonic order, 0;„is an arbitrary phase, and

p = 4mQhk, ~/k',
(0 = volume of the crystal; hk, = height of the Brillouin zone perpendicular to the layers).

The equilibrium value of b, (H) is obtained by minimizing (3) with respect to h. This yields

a(H) =S +u, (FI),

where, to first order,

5b. = —(dFo /d+)a=a [{dFc/did)a=a ]

and

(8)

F =Fc(b,c) +Fo„(b,c,H) —,'f(dFo„/dA—)~ ~ ]'[(d'Fc/db, ')~ ~ ] '.

When (4) and (2) are introduced into (7) we obtain oscillatory terms which vary periodically with in-
verse magnetic field with frequencies which are characteristic of the areas (n;A, +n,.A,.). In all cases
the areas are for b, =b, c, and n& and n, are integers. If we call amplitudes f (n; A, +n, A;) the factors
in front of the cosine functions in F, the most important amplitudes are given by

5(d~k!!T
P sinh(2n'k, Tm, /$(u, )

' (8)

(9)

(10)

In all the above equations we have kept only low-
est order contributions in 54 and we have as-
sumed that 27!'k!!Trn, /K~, ) 1. In (9) y,„,is a
phase which depends on the phases of 8& of (4).

Although the CD%'s modify the harmonic con-
tent of the ordinary dHvA oscillations, as shown
in (9), the main effect is the appearance of the
new frequencies as given by (10). In particular
f (A, -A, ) may correspond to a small frequency
even though both A, and A, are normal {large)
areas.

In order to illustrate the results above we have
calculated the amplitudes for a particular exam-
ple. We have taken a two-dimensional dispersion

relation E(k) of the form

which corresponds to a BCS-type model discussed
by Fedders and Martin' '' and Rice.~~'" The re-
lation (11) yields at the Fermi level E =0, two
concentric circles (cylinders) of radii

(12)

Of these surfaces the inner one corresponds to
holes and the outer one to electronlike quasipar-
ticles. In Fig. 1 we show results for f (A,), f (2A, ),
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precisely because they introduce gaps in the en-
ergy spectrum at the Fermi level. The energy
and wave function of the electrons near EF, and
therefore the area and structure of the electron
orbits as seen by the dHvA effect, are thus more
strongly affected by the density waves than by
other electronic parameters.

As a concluding remark, it is important to no-
tice that the amplitude of the nonlinear effect,
as given by (10), is inversely proportional to the
parameter a defined by (2). Since a is a mea-
sure of the stability of the CDW, the new dHvA
oscillations should be more easily observable for
small o. 's, i.e. , for less stable CDW systems.

FIG. 1. The amplitude of the oscillatory free energy
for the example given in the text. The abscissas are in
kilogauss and the ordinates in arbitrary units. The
dash-dotted curve corresponds to the fundamental ar-
eas A, and A2. The dashed curves correspond to the
second harmonics 2A, and 2A&, the upper curve is for
g~=0 in formula (9) (constructive interference) and
the lower curve for g~ ——& (destructive interference).
The full line corresponds to both 4, +A. 2 and A, -A 2.

and f (A, +A, ) for the case

o. =0.2, T =O'K, 4 =0.02 eV,

Ep: 0 OO eV vp: 105kp kp: 0 172 A

which are realistic parameters for the layer
compounds. In this model (A, —As)/A, = 0.06,
i.e. , the frequency of the difference oscillation
is only 6%%uq of the A, - or A, -related fretluencies.

It is interesting to note that the A, -A, fre-
quency of pig. 1, which is very small, has a
temperature dependence characteristic of a
"heavy" mass (m, +ms). For the example given
~ y:~ 2 = 0 115 and, for a typical field of 50 kG,
f (A, -A, ) is a factor of 10 smaller than either
f (A, ) or f (A,). However, since the oscillations
are in a completely different region of the spec-
trum, they should be easily observable.

The numerical example reported here is for
admittedly rather small but reasonable "ordin-
ary" cyclotron masses. For masses one order
of magnitude larger (- 1.0 m), the difference fre-
quency at T = O'K and H = 50 kG would have an am-
plitude only 10 ' that of the fundamental frequen-
cies.

One point is worth remarking. The electronic
spectrum at the Fermi level is particularly sen-
sitive to the appearance of CDW or spin-density
waves. In fact these density waves are stable
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