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The 160(7’.? o) cross section has been measured for a series of photon energies between

100 and 300 MeV at proton angles of 45°, 90°,

and 135°.

Above 250 MeV, the results ex-

ceed simple shell-model predictions by several orders of magnitude. The data are com-
pared with a calculation which involves A excitation in an intermediate state,

The (y,p) reaction at energies well above the
giant dipole resonance has long been recognized
as a potential source of information about short-
range effects in nuclei, on account of its sensi-
tivity to high-momentum components in nucleon
wave functions. If the experimental (y,p) cross
section is found to exceed that predicted by a
shell-model calculation assuming a single-step
knock-out mechanism, this could be taken as evi-
dence that short-range effects are operating to
increase the high-momentum amplitudes above
those of the simple shell-model wave functions.
Precise (y,p) measurements™? on several nuclei

8

are now available for photon energies up to 100
MeV. The comparison of recent theoretical cal-
culations with these data does not in fact yield
any conclusive evidence that short-range effects
are important. A consistent explanation of a wide
range of data has been achieved® by a model
which introduces a residual interaction with the
range of the one-pion exchange force, thus in-
creasing the cross section predicted by the sin-
gle-step proton knock-out mechanism. However,
the need for this medium-range residual interac-
tion can be largely removed by an alternative and
perhaps more reasonable choice? of the potential-
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well parameters which determine the single-nu-
cleon wave functions. The inadequacy of the sin-
gle-step mechanism may nonetheless become evi-
dent at higher photon energies, which sample
higher initial proton momenta. Accordingly, the
earlier investigation of the reaction '°O(y,p,) has
been extended to 300 MeV. The results are re-
ported below.

The experimental technique employed in the
present work is similar to that used previously,?
in which the spectrum of protons emitted from a
beryllium oxide target bombarded by a brems-
strahlung beam is measured. Because of the rel-
atively high excitation energies (=5 MeV) of the
lowest excited states of the residual nucleus !°N,
the cross section for the (y,p) reaction leaving
15N in its ground state can be obtained directly
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FIG. 1. Differential cross section in the laboratory
system for the reaction '®0(y,p)!°N as a function of
photon energy at proton angles (a) 45°, (b) 90°, and
(c) 135°, Solid circles are used for the data of Ref, 2,
open circles for the present results., Only statistical
errors are shown. The curves represent the theoreti-
cal predictions of Ref. 5, as discussed in the text:
dashed curve, single-step process only; solid curve,
one-step plus two-step process (see Fig. 2).

from the highest 5 MeV of the bremsstrahlung-
produced proton spectrum.*

The 400-MeV electron linear accelerator and
the 900-MeV/c magnetic spectrometer at the
Massachusetts Institute of Technology Bates
Laboratory were used to make these measure-
ments. A multiwire drift chamber determined
the position in the spectrometer focal plane and
thus the momentum of the protons, and a backup
counter telescope consisting of three NE110 plas-
tic scintillators served for particle identification
and background reduction. The data were ana-
lyzed by calculating the photoproton spectrum
shape assuming a theoretical bremsstrahlung
spectrum and taking into account the energy loss
and straggling of the protons in the beryllium ox-
ide target. The calculated shape was then fitted
to the measured spectrum to determine the cross
section. A complete description of the experi-
mental system will be published separately.

The present results for the *O(y,p,) reaction
cross section populating the ground state of the
residual !°N nucleus are presented in Fig. 1, to-
gether with the earlier data® below 100 MeV and
theoretical calculations by Nixon, Londergan,
and Walker.® This single-step (shell-model) pre-
diction, calculated by evaluating the diagram
shown in Fig. 2(a), is not claimed to be very ac-
curate since, for simplicity, harmonic-oscilla-
tor wave functions are used and the distortion of
the outgoing proton wave by the final-state poten-
tial is ignored. However, its general trend, viz.
a very rapid fall of the cross section with in-
creasing photon energy, is a common feature of
all calculations which include only single-step
photoejection from a simple shell-model orbit.

It is immediately clear from Fig. 1 that the ex-
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FIG. 2. The (v,p) processes considered in the calcu-
lation of Ref. 5: (a) one-step, (b) two-step process.
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perimental data deviate strongly from this trend
in the 100-200-MeV region. Above 250 MeV the
measured cross sections are seen to exceed the
single-step predictions by several orders of mag-
nitude. This discrepancy is far beyond the range
of theoretical uncertainty in the single-step cross
section ensuing from reasonable variations in the
potential well parameters. It provides strong
evidence for the involvement of more than one nu-
cleon in the photon absorption mechanism and,
hence, the possibility of discovering the details
of the interaction processes which provide the
necessary additional high-momentum components.

Two such processes have already been investi-
gated theoretically in a qualitative way and are
shown to be capable of enhancing the (y,p) cross
section above 100 MeV, viz. short-range corre-
lations® due to the repulsive core of the internu-
cleon force and a two-step mechanism® in which
the A(1232) nucleon isobar is excited in an inter-
mediate state [see Fig. 2(b)]. The preliminary
results of this latter calculation are shown in
Fig. 1. It is evident that the A excitation mech-
anism ¢an make a major contribution in the 100-
300-MeV photon energy region.

Experimental data of reasonable accuracy and
extent are now available over the kinematic range

in which one might hope to observe short-range
effects in the (y,p) reaction. Because of the ap-
parent importance of virtual A excitation, how-
ever, a more careful theoretical treatment of
this and other processes™*° is necessary before
additional constraints on the internucleon force
at small distances may be obtained.

We wish to thank Dr. Londergan for sending us
his calculations prior to publication.
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A microscopic model is presented which provides a practical means for selecting the
states necessary for the development of nuclear collective rotational and quadrupole vi-
brational motions in a shell-model calculation. The model is based on the noncompact
Sp(3,[R) algebra and is a natural generalization of Elliott’s SU(3) model to include many

major shells.

In spite of the enormous successes of the nu-
clear rotational model, a microscopic theory of
rotational states has proved extraordinarily elu-
sive. One of the problems is to learn how to
recognize rotational states. In a recent paper!
we proposed a criterion for designating a state
rotational based on the concept of a well-defined
intrinsic shape, measurable with shape observ-
ables.

The essential idea follows a suggestion of Ba-
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ranger.? One observes that each set of nucleon
coordinates defines a traceless quadrupole mass
tensor @ and hence a set of principal axes and
principal values. Thus the nuclear density Izp('fl,
..., r,)|? defines a probability distribution P(x,,
Xs, A5) for the principal values of the quadrupole
mass tensor. The criterion for a state to be ro-
tational is then that the width of the distribution
in A, should be small compared to its mean value
It was shown that X, can be expressed as a func-



