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For both T &T and T &T„we report exact expressions for the n-spin correlation func-
tion of the two-dimensional Ising model suitable for studying large separations between
spins. In particular, the scaling limit of these correlation functions can be shown to ex-
ist and yields n-point Schwinger functions of some relativistic quantum field theories.

The last decade has seen the widespread recog-
nition of the close relation between relativistic
quantum field theory, with or without spontaneous
symmetry breaking, and the statistical mechanics
of ferromagnets on a lattice near the critical tem-
perature T,." As T -T„since the correlation
length of a ferromagnet diverges as 11 —T/T, l ",
it is natural to scale all distances R according to

In the so-called sealing limit, where R, -~, T
-T, with all r, fixed, a suitable choice of P will
permit the existence of

=limIl —T/T, I
"'(on ~n ~ ~ ~ ~n &. (2)

This scaled n-point correlation function of the
ferromagnet is, up to a possible multiplicative
constant, the n-point Schwinger function of the
quantum field theory. '

The statistical model on which we have the most
information is the two-dimensional Ising model.
In this note, we report the exact expressions for

(v»o»" v„), both above and below T, .
Some time ago Montroll, Potts, and Ward' de-

rived a representation of the multispin correla-
tion functions of the two-dimensional Ising model
in terms. of determinants. These determinants
are of small size when the spins can be grouped
into a set of pairs such that the members of each
pair are close together. However, if all spins
are widely separated the size of the determinant
grows with the separation and the behavior of the
correlation functions in the scaling limit is no

longer manifest.
The process of converting the determinants of

Montroll, Potts, andWard into a form useful for
studying widely separated spins was initiated,
over a decade ago, for the two-point function

(o» vu „).' However, these results deal only
with the case of large x, i.e. ,

The complete expression for this two-point func-
tion, useful in particular in the scaling limit, has
been obtained only recently. '

The method followed in Ref. 7 to deal with the
two-point function begins with a particular choice,
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ns nr
''' e ~ )= exp+a~

] sinh 1 sinh 2

(a)

k=2

already used in Ref. 6, of the determinant of Mon- (a) For T & T„
troll, Potts, and Ward. This particular choice
has no sensible generalization to the n-point func-
tion withn &2. Et is a recent realization that a where
different choice leads to a natural generalization
to all n. The results' are remarkably compact
and the derivation is no more complicated than for
for the case n = 2. The derivation will be pub-
lished at a later date. The results are as follows:

with

(5)

F (s) [2z (1 z 2).]~ ~
i... T2a

f' ~dp

2k ', 2m 2m

]x II ' ' ' "' Tr[A(1, 2)A(3, 4) A(2k —1,2k)]
('2i-x &2i)»n2(9'2(-P2( 2+ate)

where A (2/ —1, 2/) is an n x n matrix with elements

(6)

A (2/ —1,2/)~;, = sgn(M, .„)exp(- iM;,p„,—iN, „y»),

+2k+1 ~11 ~2k+2 +21 f)/~ O' 8 P +o,8 cx +8 p

b, (((i„p2) = (1+z, )(1+z2 ) —2z2(1 —z,2) cosy' —2z, (1 —z2z) cosy,

z, = tanh(E, /kT), z, = tanh(E, /kT),

(7)

(8)

(9)

(10)

with E, (E,) the horizontal (vertical) interaction energy; k is Boltzmann s constant; sgnx =+1 if x &0,
—1 if x & 0, and either + I if x = 0; and the limit ~ -0' is understood.

(b) For T &T, (with n even since by symmetry the correlation function vanishes if n is odd),

n E
11 22 n n

where F„ is still given by (5) and (6);

5K, =) sinh( ')sinh( *) - iI

G„= IdetG(„);;I'", i =1,2, ... ,n; j =1,2, . . . ,n, (13)

(k)
(n)ij ~ (n)ij y

with

G =- G " ~ =[2z (1-z 2)]~ i. [2z (1-z )] d k 1
(ii) 4 ( )ii n2 1 1 2 2+ 2+ +(+ + )

k" 1
2((('~i -i+ (0ui+i) ~ 1

)
exp[i2(y, ~, —p,)] exp[22(((2» p2)]

2 ~'F21 +2l +2

x{A(1,2)A(3, 4). ~ A(2k —1,2k)j;, , (15)

where {ej;;is the ij element of the matrix 6.
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To take the scaling limit we define

m„,=M., ~z,z, +z, +z, —1~[x,(1-z,')] '",
n „,=N„, ~z,z, +z, +z, 1—

~ [z,(1-z,2)]-'&2,

(16a)

(16b)

and IetM„8-~, N„B-~, z,z, +z, +z, —1-0 (T-T,) withm„s andn„~ fixed to obtain, (a) for T &T„

(~u z &~ )(
' ' ' ~e N ) = expf

x a

with

(17)

gf (a)
k-" 2

(18)

dx, 'dx dy, 'dy II(1+x '+y ') ' ' '". Tr[a(1)a(2) a(a)],
Oo Xl+y + SE

where a(l) is an n &&n matrix with elements

a(l)i, , =0,

a(l) ~,,= sgn(m, ,) exp(- im, .„y, —in, ,x,);
(b) for T &T„

11m% (VN E VAt N VAf N ) ~g» expf„
2 2 n

where f„ is still given by (18) and (19) and

g„= Idetg(„)) i

~
~~ (k)

8(fI)ig ~ g(n) f)
k=x

with g( )
~ ' 0 and

(20)

(22)

(23)

x II ' "'. (a(1)a(2) ~ a(k))„.
l= Xl Xi+1+le (24)

The formulas (3) and (11) possess many properties which are not immediately obvious. In particular,
because of the signature factors and the +i@ prescription, many properties which are true of (3) and
(11) are not valid term by term in the expressions (6) and (15). We have explicitly verified invariances
under (1) M„- -M„, (2) N„- —N„, and (3) M„—N„and E,—E„aswell as rotational invariance in the
scaling limit. The connection between representations (3) and (11) of the n-point function and the T
near T, expansion of previous authors' will be studied elsewhere.
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Baker, Jr. , and Professor Arthur M. Jaffe. We especially wish to thank Professor R. Z. Bariev for
pointing out that for T T„our result of Ref. 7 and his result of Ref. 7, while in different forms, are
equal.
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We present numerical data and scaling theories for the critical behavior of random re-
sistor networks near the percolation threshold. We determine the critical exponents of a
suitably defined resistance correlation function by a Pade analysis of low-concentration
expansions as a function of dimensionality. We verify that d=6 is the critical dimension-
ality for the onset of mean-field behavior. We use the coherent-potential approximation
to construct a mean-field scaling function for the critical region.

In this Letter we report some new ideas con-
cerning the properties of random resistor net-
works near the percolation threshold. ' The model
we treat is that of an electrical network on a d-
dimensional hypercubic lattice of I-" sites with
conductances 0;, connecting nearest neighboring
pairs of lattice sites i and j. Each o,, is an inde-
pendent random variable assuming the values 0,
or o& with respective probabilities 1-p and p.
The macroscopic conductivity, Z, is then defined
to be the configurational average of oL' ", where
v= I/V, where I is —the current when the potentia. l
difference V is applied between two opposite (d
-1)-dimensions. l faces of the hypercube. We may
define clusters as being groups of sites which are
connected with respect to the conductances o&.
The statistics of cluster size and the associated
pair connectedness correlation length, $(p), were
shown' to be related to the thermodynamics of the

s-state Potts model in the limit s —1, if the iden-
tification p = 1 -e '"r is made, where J is the
coupling constant for nearest-neighbor interaction
in the Potts model. This relation indicates that
the usual exponent description for phase transi-
tions can be applied to the percolation threshold
and that the various scaling relations and univer-
sality predictions can be expected to hold as well.
It was later shown'" that for d&d, =6, mean-field
theory gives correct values for cluster statistics
nea. r the percolation thresholdo. := —1, P = 1, y
= 1, and v = —,'. In view of scaling arguments which
relate the resistor network and percolation prob-
lems, de Gennes' has suggested that d, =6. Here
we present numerical evidence which confirms
that this suggestion is correct. We also discuss
several new scaling relations.

A way to determine d, without using the renor-
malization group (RG) is to analyze the high-tem-
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