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Current Instability and Domain Propagation Due to Bragg Scattering*
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We propose a new mechanism for a current instability in single-valley semiconductors
based on the momentum loss of hot carriers by Bragg reflection. We construct a simple
model which gives rise to bulk negative differential conductivity of the uniform current
state above a critical field E associated with a soft dielectric relaxation mode, and to
traveling dipole-domain solutions. The possibility for this mechanism to occur in real-
istic situations is discussed.

We present a new mechanism for a current in-
stability in single-valley semiconductors based
on momentum loss of hot carriers by Bragg scat-
tering. With increasing applied field E, the car-
rier distribution becomes broader and tends to
fill the whole Brillouin zone (BZ).' Consequently,
because of the acceleration by E, an increasing
number of carriers reaches the BZ boundary per
unit time where they suffer a momentum loss
equal to a reciprocal lattice vector E. We show
that this mechanism leads to a bulk negative dif-
ferential conductivity (BNDC) and therefore to an
instability of the uniform-current state. In con-
trast to the Gunn effect, this mechanism is uni-
versal and does not depend on peculiarities of the
band structure.

There is strong interest in current instabilities
as phase-transition-like cooperative phenomena
in nonequilibrium systems. A bulk instability in
n-type GaAs caused by intervalley scattering of
hot carriers into low-mobility valleys was dis-
covered by Gunn, "who found propagating dipole
domains at high fields. This problem was treated
theoretically by several authors. ' ' Some of this
work4 ' rests on purely macroscopic concepts
such as field-dependent drift velocity and diffu-
sion constant, and does not depend at all on the
mechanism causing the BNDC. Such an approach
is unsatisfactory both in principle, because it as-
sumes a field dependence which should be the re-
sult of the theory, and in practice, becuase it is
doubtful whether the macroscopically determined
field dependence is valid in the highly nonuniform
field of the nonstationary state. This objection
does not apply to a treatment based on phenome-
nological balance equations for local state vari-
ables" which is also used in the present work.

We consider a nondegenerate, n-type, single-
valley semiconductor, and assume that the cur-
rent states of interest can be described in terms
of the carrier density n, the momentum density

np, and the energy density nw of the carriers for
all x, t. Current transport is then - --"~d by
the continuity equation

n+V(nv) =0,

and by balance equations for momentum and en-
ergy fields:

p+v ~ Vp+(~/n) Vn = beE -y»p,

w+ v ~ Vw =ev E -y (w -w ).
(lb)

(1c)

e~V. E = 4'(n -n~), (1d)

Here, y~ and y are relaxation rates describing
exchange of momentum and energy with the lat-
tice due to ordinary scattering processes, zv, be-
ing the electronic energy at equilibrium. The lat-
tice is assumed to be kept at constant tempera-
ture. We have assumed an electronic stress ten-
sor H =m, and have neglected momentum diffu-
sion in (1b) and electronic heat conduction in (1c)
as compared to the relaxation terms. The mo-
mentum balance is driven by the acceleration
term eE, and the energy balance by Joule heating
ev E of the carriers. Bragg momentum loss re-
duces the acceleration term by a factor b: During
dt, a fraction f(kgeE dS,dt/n reaches the BZ
boundary element dS, at k~ where they lose mo-
mentum K (Fig. 1). Therefore, the momentum
gain p f $d

—eE is reduced by a factor

b = 1 n'f~ )Qf (h)-dS» (1.
The value f (h,) will be mainly determined by the
width of the distribution function f(h) and there
fore by the carrier energy w yielding b = b(w)
For reasons of simplicity and definiteness, we
approximate this function by a linear variation
b(w) =(w„-w)/(w -wo) in the region of interest.
For the average drift velocity we assume v =p/
m with constant effective mass m.

The local electric field E is coupled to the car-
rier density by Poisson's equation
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where u~=(4me'no/c~nt)"' is the plasma fre-
quency. For E increasing toward E, one finds F
decreasing toward 0 whereas D stays positive.
The uniform state thus becomes unstable at E,
against a soft dielectric relaxation mode. ' The
Debye length

1/2 ]( m ~ 2 1/2

-kb kb k

where e~ is the lattice dielectric constant and nD
is the donor density.

Setting all derivatives equal to zero in (la)-
(ld) we find a static j Echa-racteristic of the
form

j =(n~'/y~m)bg„

f (E,) = f,= 1/t,1+(E,/E, )'],
(2a)

(2b)

(subscript s for static), which has BNDC above a
critical field

FIG. 1. Change of distribution function due to accel-
eration by the field E, to ordinary scattering processes
(Df~&&), and to Bragg scattering.

p =mv, (E„), (7a)

(7b)

diverges for E increasing toward E, indicating
that the system loses its capability to screen
long-wavelength charge fluctuations.

We search for one-dimensional traveling-pulse
solutions of (la)-(1d) which depend only on Z =x
-ut with u =pulse velocity ("solitary" solutions).
We find localized dipole-domain solutions travel-
ing with velocity u = v,(E„)where E„&E,is the
uniform field at large distance from the domain.
The form of the domain is given by

eE, = fmy~y (w -u),)]"'. (2c)
(7c)

((u,'/y, ) (2b, -1)b,
1+(~~'/y~y )5,' '

and carrier diffusion with diffusion constant

(~/my, )5,
1 + ((u~'/y~y g b,"

(4)

At E &E„ the momentum gain be 6E due to an in-
cremental field 6E is overcompensated by the
Bragg loss eE5b caused by the additional Joule
heating. It should be noted that this mechanism
is different from that of a negative effective-
mass instability which requires that m, ff aver-
aged over the distribution takes on negative val-
ues. '0 The instability found by Schlup" for a
simple periodic E(k) band in a Boltzmann-equa-
tion approach with relaxation approximation, on
the other hand, is probably caused by the mech-
anism presented here.

A mode analysis (frequency &u, wave vector q)
of the uniform state yields drifting relaxational
modes with frequency

&u, = iI'+ v,q iD-q'+ 0( I'-, q'I, q').

Thus, a drifiting charge distribution decays by
two competing processes, dielectric relaxation
with rate

(7d)
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FIG. 2. (a) e-E characteristics of traveling-wave
solutions of (1a)-(1d). The solitary solution separates
periodic solutions (closed curves) and unbounded solu-
tions (open curves). (b) Carrier density of the dipole
domain.

where ~=E-E„is the excess field in the do-
main with maximum ~ = 2(E,'-E„')/E„, and
l„=e~~„/4menL, is a length equal to the thickness
of a depletion layer sufficient to screen the max-
imum excess field bE . The n-E characteristic
(7b) is displayed in Fig. 2(a), and Fig. 2(b) shows
the density field n(Z) obtained by integrating (7d).

For E„close to E„one obtains a diffusion-
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limited small-amplitude domain (SAD) with a
width determined by the Debye length l n(E„)
which diverges at E,. The excess field can be
given in analytic form:

~(Z) = ~ sech'(Z/2ln) +O(I' '). (8)

As E„departs from E„ the amplitude increases
and the domain width decreases. In the large-
amplitude domain (I,AD), on the other hand, the
leading edge is completely depleted, and the do-
main width is determined by the depletion length
l„which increases with decreasing E„. The
minimum width occurs for E„-/D.

For the excess voltage b, V= (~(Z)dZ we obtain

6 V = 4l n~„-(E,-E„)'~' for SAD,

2~d~m Eas or LAD.

(9a)

(eb)

The dynamic current-voltage characteristic can
be constructed from the excess voltage' and de-
pends strongly on the ratio of the domain width
to the sample length.

In order to test the stability of the domain solu-
tions, one studies the time dependence of small
deviations 5y(Z, f) = 6y(Z) exp( —A. l) (y = n, p, so, E).
For infinite external impedance, Zex™—,the
boundary condition is constant total current j
+e~E/4v. Because of translational invariance,
there exists always an eigenvalue A. = 0 with eigen-
function Bcpd, »g&Z. In order for the domain
solution to be stable, all other eigenvalues have
to be positive.

For the SAD we find the eigenvalue problem

l D'5E "(Z) —(I—3 sech'(Z/2l D) —X/I') 5E = 0, (10)

with discrete spectrum A.o=-5I'/4, A. , =0,
=3I"/4, and a continuous spectrum A. ,= I'+Dq'
~I. Thus, at Ze"™ ~, the SAD is unstable. ' We
have shown that it can also not be stabilized by
an external circuit. Preliminary results of a
full stability analysis for arbitrary amplitudes
show that the solution is stable above some crit-
ical amplitude, such that a first-order transition
occurs at E, to a LAD.

With u - conduction-band width -1 eV, m
-0.1 eV, y~-y -10"sec ', the critical field E,
-10' V/cm of a. pure semiconductor is rather
high, Better candidates for observing this in-
stability are possibly the semiconductor super-
structures studied by Esaki and Chang" and
Dingle, Wiegmann, and Henry, "where the ar-
tificial spatial periodicity causes a splitting of
the conduction band into a number of sub-bands
separated by energy gaps. The current instabili-
ties observed in these structures" have been in-
terpreted in terms of a different mechanism
based on tunneling through the gap 6 into the next
higher sub-band, This mechanism requires phase
coherence of the electron wave function over a
distance b,/eE equal to the spatial extension of
the gap, whereas our approach is valid for (elec-
tron mean free path) «b, /eE«ln. Thus, by
studying the dependence on the mean free path,
one may decide which of the two mechanisms
causes the instability.

*Work supported by the Swiss National Science Foun-
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