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A unified geometric formulation of gravitation and supergravity is presented. The ac-
tion for these theories is constructed out of the components of the curvature tensor for
bundle spaces with four-dimensional Iorentz base manifold and structure groups Sp(4)
for gravity and OSp(1, 4) for supergravity. The requirement of invariance under reflec-
tions, local Lorentz transformations, and general coordinate transformations uniquely
determines the action and ensures the existence of local supersymmetry in supergravity.

A theory has recently been proposed in which
the gravitational field and a massless spin-& Ma-
jorana field are coupled in a supersymmetric
way. " Other supersymmetric theories have also
been obtained incorporating additional fields, in-
cluding spin-& and spin-1 fields. ' These theo-
ries have all been constructed from some trial
Lagrangian by adding to it successive terms so
as to make the total Lagrangian supersymmetric.
In spite of its success, we feel that this proce-
dure is not completely satisfactory insofar as it
does not explicitly exhibit the underlying gauge-
group structure of the new symmetries.

In this Letter, we present a unified formulation
of Einstein's theory of gravitation and the original
supersymmetric theory, which couples the gravi-
tational field to a real massless Rarita-Schwinger
field, hereafter referred to as supergravity. In
this formulation all the fields h„~ are treated as
gauge potentials, belonging to the adjoint repre-
sentation of a gauge group or supergroup G,
which has the Lorentz group SL(2C) as a sub-
group.

The Lagrangian is constructed exclusively in
terms of the curvature tensor R„,~, which trans-
forms covariantl. y under G. It is required that
the action be invariant under general coordinate
transformations and under local Lorentz trans-
formations [gauge transformations in the sub-
group SL(2C) of G]. It is found that the most gen-
eral Lagrangian so constructed, taking for G the
de Sitter covering group Sp(4), is equivalent to
Einstein's Lagrangian with the addition of the cos-
mological term. If one performs a signer-Inonu
contraction of Sp(4) down to the Poincare group,
the cosmological term drops out.

Similarly, the Lagrangian constructed with
gauge fields associated with the superalgebra
OSp(1, 4) is a generalization of the theory of Ref.
1 with the addition of cosmological terms. Again,
after contraction it reduces to that theory.

The origin of the supersymmetry can be direct-

(X„I')=f„,+c. (2)

The Killing metric of L is the constant tensor, '

g~a=(-1) ""~»=&-(-1)"&~c'+~a'.
C&D

It satisfies the identity

fAc &Da fax &cD
D D (4)

ly traced to the fact that in the absence of the
vierbein potentials k „associated with transla-
tions, the action is invariant under the super-
group OSp(1, 2C)—in fact, it becomes a topologi-
cal invariant associated with this group. In this
Letter, we shall outline the general formalism
and give the main results of its application to the
theory of gravitation and supergravity. A more
complete and detailed description will be given
in a subsequent publication. '

Consider a continuous group or supergroup G
and let H be a maximal Lie subgroup of G. The
Lie (super-) algebra L of G can be decomposed
into the direct sum L, 8 L„where L, is the Lie
algebra of 8 and L, is homeomorphic to the quo-
tient space G/H. Let(X„)=]X„O,X~xj be a basis
for L. %e have the following product in L:

~X~ Xsf = -(-»""[X~,X~) =f~~'Xc
where the signature 0~ is defined by o„=1 if the
index A belongs to a component of L, and G is a
supergroup, o~=O otherwise. ' The structure
constants f»c are easily identifiable for the
groups that we shall be considering; and we need
not use their explicit forms in terms of the Min-
kowski metric and y matrices. However, we
would like to emphasize that, following current
practice in gauge theories, we incorporate all the
coupling parameters in the structure constants.

The adjoint representation of G is a set of vec-
tor fields (h"j with the following transformation
under L:
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We construct a principal bundle P(G,M,) with
structure group G and a four-dimensional real
base manifold M4. Let(x&) be a coordinate sys-
tem in M~. Introduce a connection in P by defin-
ing the covariant derivatives

D„=8 „+hp XA,

where h„" belongs to the adjoint representation
of G, and transforms as a vector (with respect
to the index g) under general coordinate trans-
formations. Then we have

(S)

[D„,X„]= 0. (8)

The h„"'s are gauge potentials (or connection co-
efficients). Under a local infinitesimal gauge
transformation generated by e "XA we have

5,D~ =[Dp, @~X~]= (D~c")X~,

so that

h A D gA 8 EA+ f Ah CgB
]Ll P P CB (8)

The curvature (R is a, horizontal. two-form with
values in the Lie algebra, of G, whose components
are given by

where

'5qI f2f R p p R go fcD Q»'E (14)

They transform covariantly 5,R„,"=fc~~R„„ca~
~~c ~ Rpv ~ The Jacobi identities for the op-

erators D& imply the following Bianchi identities
A

(X pL')

where (A pv) stands for cyclic permutations of
the indices. The most general integral over a
cross section of the bundl. e, depending on the
fields h„" only through the components of (R (poly-
nomial in these fields) and invariant under gener-
al coordinate transformations, is of the form

I(Q)= fR "R 'Q»~~""dS (12)

or, in a coordinate independent way,

I(Q) = fS"&(R. BQ»,

where Q» are constants, antisymmetric if G is
a supergroup and (A,B) belongs to I.„but sym-
metric otherwise. The variation of I correspond-
ing to infinitesimal transformations of the h„s
given by (8) (local gauge transformations) is

(R(D~, D„)= —[Dp, D„]=R
p p "X„, (9) The variation of I for arbitrary variations of the

h's is

I

5I= 45hp hv Rzo'(fBC QAD fAB QDC)~"' 'd

In deriving this result, we make use of the Bian-
chi identities (11). It follows from (4) that for
Q»=g», or more generally for Q» a.n invariant
tensor [which satisfies an equation of the form
(4)], I is a topologica. l invariant.

One can decompose I(Q) into elements of irre-
ducible representations of G. Such a decomposi-
tion which is relevant for the determination of the
symmetries of I will be discussed in another pa-
per.

We sha, ll now show how the theories of gravita-
tion and supergravity can be formulated within
this framework in a unified manner. We require
that these theories be invariant under local Lo-
rentz transformations so that G must contain the
Lorentz group a, s a subgroup. Take G = Sp(4) for
the theory of gravitation and G*=OSp(1, 4) for
supergravity. The gauge potentials belonging to
the adjoint representation are fh„', h„'j and fh„',
h&", h&'j, respectively. The index a =[ij] (a pair
of antisymmetric indices) is associated with Lo-
rentz transformations X„ the index i is a vector
index associated with the generator X, and n is a.

spinor index associated with the super symmetry
generator X . Then h &', h „', amd h

&
are, re-

spectively, the gauge potential for the Lorentz
group (connection coefficients), the vierbein and
the spin-& Majorana field. The corresponding
gauge fields are the components of the curvature
tensor A&,

A defined for each of these two groups
by (io).

The general for m of the action integral I con-
structed with A», invariant under local Lo-
rentz transformations and even under reflections,
is obtained with the following choice for Q»:

(i) Q» = e„for the group G = Sp(4),

(ii) Q»= f e„,l y(y, )„&] for the supergroup G*

= OSp(1, 4)

where e„=e,», is the Levi-Civitas symbol, (y,) „&
=C„&(y,) 8&, and g is a parameter which essen-
tially normalizes the spinor field. Now notice
that if one sets h'=0 in the transformation laws
(8) for G and G", then the restriction of these
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transformations to the subsets {Xg and {X„Xj
of the respective Lie algebras gives precisely the
transformation laws for the adjoint representa-
tions {h'j and {h',h"j of the groups G, =SL(2C)
and Go* = OSp(1, 2C).

Moreover, the choice of Q» given above, with

y defined by

~.gf~s'= Xf.n'(r, })s,

corresponds to Clebsh-Gordan coefficients for an
invariant product of two adjoint representations
of Q, and G,*, respectively. Hence, if in the ac-
tions I and I* one sets h &'= 0, they become topo-
logical invariants P' and I*'., the Euler-Poincard
character istics of the manif olds with structure
groups Qp and G,*. This ensures the invariance
of I* under a supersymmetry transformation. In

fact, the Euler-Lagrange equation that minimizes
I* under arbitrary variations of h &' is R

&
„*'= 0,

as can be inferred from an inspection of (15). It
gives a constraint among the gauge potentials
which can be solved for h&'. Insertion of this so-
lution into the action leads to the second-order
formalism for these theories. But then 6,I* given
by (14) with R„„*'=0vanishes if e'=0. (Notice
that the manner in which h &' transforms under
this variation is now irrelevant since the coeffi-
cient of 5,h„' vanishes. ) Therefore, an invariant
supersymmetry transformation 6,~ obtains in the
second-order formalism.

Since the first- and second-order formalisms
are completely equivalent, one can also derive
an invariant supersymmetI y transformation in
the former. The transformation of the independ-
ent fields h„'would be

with f;&'= —,'X'5I, ,&' and the inverse matrix h;" being defined by h;"h„'= 6,'. This is equivalent to the re-
sult of Townsend, ' and analogous to that of Ref. 2, for the contracted version of this theory.

Denoting by R„„'and R„„*'the components of the curvature tensor for the spaces P(G„M,} and
P(G,*,M,), we can write

Ru„'= Ru „'+h„'h u'f;,',
Ru&~ Ru&~ +h& huff~~ Ru& +h~ hu f
R„,* =Ru„* +(h„'h„-h 'h )f

Then the actions I and I* can be written as

(17)

(i8)

(i9)

(20)

(21)

where in deriving (21) we made use of (16).
The first terms Io and I*a in (20) and (21}are topological invariants, the Euler-Poincard character-

istic of the manifold. The second term in (20) is an alternate form of Einstein's Lagrangian in the first-
order formalism; the last term is the cosmological term. The brackets [ ] in (21}are an alternate
form for the supergravity Lagrangian in the first-order formalism. The remaining terms are cosmo-
logical terms. If one subtracts I' and I*' from (20) and (21), respectively, and makes a Wigner-Inonu
contraction of the groups G and G*, the cosmological terms will drop out. Then one recovers Ein-
stein's theory and the supergravity action, respectively.

The variation of these actions with respect to arbitrary variations of the h's can be read off from the
general expression (15). The Euler-Lagrange equations for the variational principle 5I=O and 51*=0,
are, respectively,

(22)

8 y, *'=0,
&uv Xah if nR g8 0

~
u' "[2h, 'f, ,'~.g,.*'+yh, f,„"(y,)»R &.*']= 0.

(23)

(24)

(25)
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By introducing the notation h„'f, s".=(y, ) a" and
rt" h, vf,.s" .=(y")s, the last two equations ca,n be
rewritten as

(y, )s"R+ "'=0 [or (y")s R„,* =0], (26)

(27)

where R*s"'=(1/2h)e"' 'Rq, * and h = det(h&')

The complete algebra of infinitesimal trans-
formations that leave the action I* invariant will
be presented in a subsequent publication. This
approach to gravitation and supergravity clearly
exhibits the intimate connection between the two
theories. Indeed, it becomes apparent that they
have exactly the same geometric structure, dif-
fering only on the choice of gauge groups for the
bundle spaces.

%e remark that our formulation of the theories
of gravitation and supergravity in the absence of
matter fields is done completely in terms of the

components of the curvature tensor without in-
troducing a metric tensor, that is, it depends on

the geometric properties of the affine bundle

spaces. Of course, one can introduce a metric
tensor g&, =h&'h, 'g,-,. which will be invariant un-

der parallel transport. Such a tensor might ac-
tually be needed when matter fields are incorpo-
rated into the theory. It will be interesting to
speculate on the possibility of extending this ge-
ometrical formulation of supergravity to spaces
with more complex structures, including internal
degrees of freedom for the matter fields.
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Double-differential cross sections for the electroproduction of pions of both charges
have been measured. We compare the data obtained for production near threshold from
~ C and '60 with theoretical treatments employirg both shell-model and sum-rule nuclear
descriptions with full inclusion of the final-state interaction.

Recent results for low-energy elastic scattering
of pions off nuclei' have confirmed that standard
Kis slinger optical potentials, ' used successfully
to correlate the strong-interaction shifts and lev-
el widths of pionic atoms, ' yield cross section
predictions that disagree sharply with experi-
ment. Although there is some indication that im-
proved treatments of kinematic effects and short-

range correlations may substantially reduce the
discrepancies, ' the need for further, independent
probes of the pion wave function in nuclear mat-
ter is clear.

The modification of threshold electroproduction
cross sections for complex nuclei by the final-
state interaction of the emitted pion provides one
such test of the Kisslinger potential. Experimen-


