
Mr ~r

VOLUME 38 4 APRIL 1977 NUMBER 14
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The n-component Ginzburg-Landau-Wilson model for a semi-infinite system is solved
exactly at T =T in the limit n —~. In the scaling regime the spin-spin correlation func-
tion is G(p, z, z', T ) =const([p +(z —z')) ~ —[p +(z+z') J '}(~ ~)~~, for dimensionalities
d in the range 2& d& 4, where z, z' are the distances of the two spins from the surface
and p is their separation parallel to the surface. The critical exponents q~ and q~~ are
(d —2)/2 and (d —2), respectively.

The techniques of expansion in powers of & =4 -d and in powers of 1/n have proved useful tools for
the study of critical phenomena in bulk systems. " In recent years increased attention has been de-
voted to the effects of surfaces on critical phenomena. ' ' Order-parameter correlations near a surface
have been studied within the e expansion by Lubensky and Rubin' (LR hereafter) who calculated to or-
der &, for all n, the exponents g& and p~~ introduced by Binder and Hohenberg. ' In this Letter we pre-
sent the first results for the limitn- , valid for all dimensionalities in the range 2&d&4. In the re-
gion where the two calculations overlap, our results for q& and g~~ agree with those of LR, and the form
of the two-point correlation function is identical to that conjectured by LR on the basis of their O(e) re-
sult. The reader should note that for the surface problem the large-n limit is not equivalent to the
spherical model. The latter model has received some attention in the literature, ' but to our knowledge
the present Letter is the first investigation of the large-n limit for a surface problem.

We adopt the following continuum model Hamiltonian for a semi-infinite system
t7

H„=fd"xHx+&r+«( ))zg q &'+z Z(&q;)'+(u/~)(Z (p )9, (l)
i= 1 i=1 i=l

where x cc(T —T,)/T„with T, the bulk transition temperature. The term Ar will be chosen to compen-
sate for the shift in T, introduced by the quartic term in Eq. (1). The surface is the plane z =0 and c
plays the role of an extrapolation length, "' assumed nonnegative here. (For c&0 the surface may or-
der at a higher temperature than the bulk."We do not consider that possibility here. ) We introduce
the two-point correlation function G(p, z, z', T) between points with z coordinates z & 0, z'& 0 and whose
separation has projection p on a plane parallel to the surface:

G(P, , '„T)=(0';(P, )(p;(O, z'))= fDcpq;(P, )(p;(0, ')e /fDq

where JD& represents a, functional integration over all order-parameter configurations.
For u =0 =b,r, the Fourier transform with respect to P, G(k, z, z', T) is given by mean-field theory"

and, in the limit c- ~ which corresponds to zero extrapolation length, it has at T =T, the particularly
simple form
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where we have written g for the u = 0 =« form of G. In the limit n - ~, the quartic term in Eq. (1) may
be "decoupled" in the usual way by writing p =(p '&+(y —(q& &) and neglecting terms of second order
j.n the curly brackets to give

(Z 0' )'"2&&0"(z)&ZV - (Z&p'&)'

and we have used the fact that (g'& = (y, '& is independent of j due to the "spin isotropy" of the model.
Hence we obtain an effective Hamiltonian

H = Jd'x(2I~+«(z)] 2 V +-'Z(&V;)'+-'V(z) ZV;']+const, (4)

where

V() = ~&P'( )&-&9"( )&]

and we have chosen « =-~(g'(~)& to ensure that the bulk transition occurs at ~ =0. It is the z depen-
dence of the potential V(z) which renders this problem nontrivial.

From Eq. (4) one sees that the function G(k, z, z, T) satisfies the integral equation

G(k, z, z, 'T) =g(k, z,z', T) —j dx V(x)g(k, z,x,T)G(k, x,z', T), (6)

and, from Eq. (5), that V(x) can be expressed as

V(x) = u Q [G(p,x,x,T) —G(p, ~, ~,T)], (7)
p&A

where A is a large-momentum cutoff. Since the cutoff has been taken as infinite for wave vectors q
perpendicular to the surface, the Brillouin zone employed is an infinitely long right circular cylinder
of radius A. The integral equation may be converted to a differential equation by taking two derivatives
with respect to s and noting that

d'g(k, z, z', T,)/dz'=k g2(k, z, z', T) —6(z —z').

Thus one obtains, for T =T„
[d /dz —k —V(z)] G(k, z,z', T,) =- 5(z —z').

By analogy with Eq. (2), we seek a solution having the scaling form

G(k, z,z', T,) =k 'E(kz, kz').

(9)

(10)

(We have specialized here to the case of zero extrapolation length. One expects that critical exponents,
etc. , will be independent of the value of c for c 0.) Dimensional analysis of Eq. (9) shows that such a
solution is only possible if V(z) ~z '. Therefore, we write

V(z) = (v' ——,')/z',

with v as yet undetermined, but turning out to lie in the range —
&

& v& z. Equation (9) may then be
solved in terms of modified Bessel functions:

G(k, z,z', T,) =(zz')" 1,(kz)SC,(kz'), z &z',

= (zz )'"Z,(uz)1, (uz ), z & z .
In principle, a term like (zz')'"f, (kz)I, (kz') could
be added to both Eqs. (12a) and (12b). It is ex-
cluded by the boundary condition that the bulk cor-
relation function G(k, ~, ~,T,) =1/2k is recovered
as z,~'- . lt might also be thought that a term
like (zz')'I'E„(kz)K, (kz') could be added to both
equations since it satisfies the boundary condition
at infinity and the surface boundary condition ap-
propriate to the infinite-c limit, G(k, z, z,T) =0
for z or z' zero, provided ~ v~ &-, . [Note that K,(x)
-x ' as x- 0.] Addition of such a term is pre-

(12a)

(12b)

eluded, however, by a rather subtle point, which
is most easily made by examining the eigenfunc-
tions tfr(k, p, q, z) of the linear operator in Eq. (9).
These satisfy the equation

[V'+ k'+q' —(v'- -,'-)/z'] g =0.

The eigenfunctions corresponding to the eigenval-
ue (k'+q'-) are (~qz)'" exp(ik. p)J,(qz) and (~qz)'"
&& exp(ik p)J,(qz). Notice that any linear combina-
tion of these eigenfunctions satisfies the boundary
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k, p, q, z * k, p, q, z'

when the eigenfunetion associated with the Bessel
function of index v is substituted for g. Only im-
proper linear combinations of eigenfunctions give
rise to terms in G like (zz')'"K,(kz)K„(kz'), so
that we can conclude that such terms are absent.

It is convenient to rewrite the expression for
the potential V(z) in Eq. (7) as the sum of two
terms V, (z) and V, (z). V, (z) is the potential which
would be found if the cutoff A were infinite:

V, (z) = uKa, f, dkk' '[zI, (kz)K„(kz) —zk ']

dt t" '[tI,(t)K, (t) ——,']. (13)

K& &= 2/((4m)'" ' "I'[2(d —1)]]and e =4 —d as usual.

condition appropriate to infinite c, viz. $(k,p, (I, 0)
=0 provided I vl & &. This somewhat unusual situa-
tion seems to leave the problem indeterminate.
The difficulty, however, can be resolved by not-
ing that linear combinations with different q val-
ues are not orthogonal, so that mixtu& es of the
eigenfunctions form an over-complete set of
states. The only satisfactory orthonormal func-
tions are the given pure eigenfunctions. This sit-
uation occurs generally for potentials as singular
or more singular than z '.' The expression for
G(k, z, z', T,) in Eq. (12) then results from the use
of the standard relation between the Green's func-
tion and the eigenfunctions,

G(R, z, z', T, )

In order that V(z) ~z ' it is necessary that the co-
efficient of 1/z' ' in Eq. (13) be zero, which
means that the integral must vanish. This condi-
tion determines v as'

v = (d —3)/2, 2 & d & 4. (14)

2 1' + O(u/A' "z')
4&A' z' (15)

The asymptotic expansion of I„(t)K,(t) for large
argument" has been used in Eq. (15). The terms
of O(u/A'"z') in Eq. (15) will be neglected for the
moment. Comparison of Eqs. (11) and (15) shows
that for consistency one has to choose a special
value of the coupling constant

u = u~ = 4E'A /K~

This value removes "slow transients" of relative
order (k/A)' and its choice is analogous to the
special choice of the coupling constant in Wilson's
E-expansion technique for bulk systems. It can
be shown to coincide with the large-n limit of Wil-
son's result if allowance is made for the cylindri-
cal Brillouin zone used in this paper.

Fourier transformation of Eq. (12), with v giv-
en by Eq. (14), yields the correlation function in
real space":

Since v has been chosen to make V, (z) zero, V(z)
= V, (z); V, (z) is just the potential resulting from
the finiteness of the cutoff:

V, (z) = uK„-,j dI I" '(zI, (nz)K, (uz) ——,'u ']

4 2

(d -2)/24zz'
G((o, , ', T,) = —,I'(d —2)K„,

«

1 1 (&-2)i&
= —.'r(d —2)K, ,' ') «*+ (« —«')* p'+ («+ «')' ) (17)

Three limiting cases are of special interest:
(i) For z, z'-~, with p, z —z' fixed, G 'a:[p'+(z
—z')'](' "", the usual bulk result with bulk ex-
ponent q = 0; (ii) for z'- ~, with p, z fixed, G '

—~, with z, z' fixed, G ' o p
" =—p" ""t~ giving

d 2 The results for q, and rI ii
agree with

the g = ~ limit of thos e of LR, ' and the structure
of the correlation function is identical to the q = ~
limit of that conjectured by LR on the basis of
their O(e) result.

We conclude by discussing some of the limita-
tions of the present calculation. Firstly, terms
of relative order (k/A)' (corrections to scaling)

were eliminated by our special choice of coupling
constant. We have been unable to determine them
explicitly. Secondly, terms of order 1/A'z' (tak-
ing u- A') and higher were dropped from the po-
tential V, (z) in Eq. (15). The influence of these
higher-order terms is presumably negligible in
the sealing regime pA, zA, z'A»1, k/A«1, but
again we have been unable to verify this directly.
The following argument suggests, however, that
such terms are probably of no importance in the
scaling regime. Suppose that the surface poten-
tial were not just c5(z) with c-~, but included a
contribution v(z), so chosen as to cancel the high-

737
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er terms which arise in Eq. (15), i.e., v(z) = (v'
——,')/z —V, (z) when u=u . A simple form for
v(z) cannot be given, but when Az»1 it will ob-
viously fall off as 1/A'z', and in fact is repulsive
in this regime. Our expression for G(k, z, z', T, ),
Eq. (12) is exact in the presence of this modified
surface potential. The question which must now
be considered is whether the modified potential
v(z) and the origina. l potential c6(z) with c-~ be-
long to the same universality class. The chief
danger is that a surface potential falling off as
only z might constitute a long-range interaction
which could modify critical exponents, etc. If
both potentials give rise to the same critical ex-
ponents in mean-field approximation then it is
probably safe to assume that both potentials be-
long to the same universality class outside mean-
field theory. While it is not possible to derive
closed-form expressions for g(k, z, z', T,) for a
general (repulsive) potential of the form 1/A~z2 ~

with p arbitrary, it is possible to find the critical
value of P for which mean-field exponents associ-
ated with short-range potentials like 5 functions
first occurs. For example, it is readily shown
that"

8(0» ~ c) ~; ~ -+2~ 0~

Linear z dependence of g at R= 0 is found for the
&5(z) potential as can be verified from Eq. (2).
We have investigated other special cases of the
correlation function g. The borderline between
short-range exponents and long-range exponents
was at p=0 in every case. We therefore conclude
that surface potentials falling off faster than z '
belong to the same universality class as a short-
range potential such as a 6 function and hence
that the neglected terms in Eq. (15) are of no sig-
nificance for behavior in the scaling regime.
Thirdly, we have not discussed the changes which
might arise if c were finite rather than infinite.
In most applications to spin systems c will be of
order A. It is worth noting that for 0/c «1 the in-

finite-c expression for g, Eq. (2), is recovered.
It thus seems likely that once again in the scaling
regime (where 0/A «1) the detailed form of the
surface interaction is irrelevant, except in the in-
teresting situation where the surface potential is
sufficiently attractive to split off a surface phase.
Exact results for finite g cannot be obtained using
the present techniques, because the existence of
an extra length scale renders the scaling Ansatz
Eq. (10) inappropriate. Similar difficulties arise
in the case T4 T„where the finite correlation
length introduces an extra length scale. At pres-
ent these difficulties seem insurmountable.
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