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these processes are also given in Fig, 3. The
single-photon process shown in Fig. 3(a) gives
x®), the two-photon process in Fig. 3(b) gives

x®) and the three-photon processes in Fig. 3(c)
and 3(d) gives x{”). Note Haroche and Hartmann’s
three-photon diagram is corrected here., The fact
that the polarization of the probe radiation is per-
pendicular to that of the pump radiation introduces
some complexities, A more detailed description
of the theory and experiment will be published
elsewhere,

In summary, our observation clearly demon-
strates the existence of velocity-tuned multipho-
ton processes in the laser cavity. Such multi-
photon processes have implications in various
areas of laser physics: (a) In the theory of the
laser the perturbation treatment normally extends
only up to the third order.'’ Many “nonresonant”
molecules which are not considered in such the-
ories may contribute to the laser power through
velocity-tuned multiphoton processes. (b) For
many multiphoton experiments, the use of a
standing wave will increase the efficiency not
only through a more intense field but also through
the velocity-tuned multiphoton process. (c) As
pointed out by Stenholm® a velocity-tuned (27 +1)-

photon process has a momentum transfer of 2/ +1
photons in a single step. This can be used for ef-
ficient deflection of atomic or molecular beams.

We wish to thank S. Haroche and S, Stenholm
for helpful discussions and E, Arimondo, P. Glo-
rieux, and A. R. W. McKellar for critical reading
of the paper.
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An analytic theory is developed to calculate poloidal beta 8; and the diamagnetic pa-
rameter y; for axisymmetric toroidal magnetohydrodynamic equilibria confining high~
pressure plasmas [ ~0(@/R)] under the constraint of flux conservation. To satisfy the
equilibrium equations, the plasma current increases with pressure as pl/ 3, Previously
calculated equilibrium limits on poloidal 8 are avoided.

Successful auxiliary heating of thermonuclear
plasmas requires a characteristic heating time
7, shorter than the energy containment time 7.
Using neutral-particle injection, tokamak experi-
ments with 7, <7, <7,, where 7, is the Alfvén
time, have been conducted (ORMAK), and future
devices (PLT, ORMAK Upgrade, TFTR) will sat-
isfy this criterion. Experimental evidence so far
(ATC, Tuman) indicates 75,< Ty, where 75 is the
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magnetic skin penetration time, The resulting
condition 7, <74 necessitates the study of a ser-
ies of neighboring magnetohydrodynamic (MHD)
equilibria under the constraint of flux conserva-
tion.

We will assume, consistent with experiment,
that on the time scale of interest both the poloidal
flux 27y and toroidal flux ¢ are conserved. Since
the safety factor q is given by q(¥) = (27) " de/dy,
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one concludes that ¢(y) will also be an invariant
for these equilibria. Thus, we take ¢(y) to be de-
termined by its value in the low-g initial state
and examine the evolution of the plasma equilib-
rium as the pressure is raised.

The condition 7, <7z implies an adiabatic equa-
tion of state, augmented in this case by a heat and
particle source term due to injection. However,
the present problem differs from the well-known
“adiabatic compressor” problem'"? in that the ma-
jor radius R remains essentially constant and
flux conservation is realized by imposing dy_/dt
=0, where ¢, is the poloidal flux at the fixed plas-
ma boundary. To keep the analysis simple we
drop the coupling between the adiabatic equation
of state and the equilibrium equation and assume
that the plasma pressure p(y) is a free parameter.
This assumption is realistic in experimental de-
vices with powerful auxiliary heating. In princi-
ple, then, we solve the MHD equilibrium problem
with p(y) and ¢(y) given.

The principal macroscopic parameters charac-
terizing the tokamak equilibrium are*

=2 [pav/(I*- 21R,) (1a)
w=2fdv(8m)'(B,2-B,)/(I*21R,),  (1b)
1,=2[dv(8n)'B2/(I% 21R ), (1c)

where I=1(3,) is the total current inside the cir-
cular flux surface boundary y =y, with major ra-
dius R,. B, and B, are the toroidal and poloidal
magnetlc f1e1ds and Bq, is the vacuum toroidal

magnetic field. g; measures the poloidal 8, u;
the plasma diamagnetism, and /; the internal in-
ductivity (inductance/em Gaussian) of the plasma
column, a geometric factor of order unity deter-
mined by the shape of the current profile.

For a complete solution of the equilibrium prob-
lem one must solve the Grad-Shafranov equation,
where F=RB, must be expressed through ¢(y),
using

a@)=(2n)"'de/dy= FV'@){R2)/4n?, (2)

where the flux surface average of R? is defined
in Callen and Dory.®

In practice, if the global parameters g; and y,
of Eq. (1) are known, the problem can be simpli-
fied by using the integral form of the virial theo-
rem and the equilibrium equation.

When evaluated on the outer flux surface of an
axisymmetric toroidal plasma, these equations

a ——==3(y)

FIG. 1. Circular flux-surface model geometry.

assume the form
Javlsp +(8m) (8,2 +B 2 - B, ?)]
= [(8m)"'B, 2% TdS,,

2n [dS,[p +(8n)""(B,*+B,*~B )]
= [(87)7'B,*%- 8, dS,,

where dS, is a flux surface element, dS, a cross-
sectional element, and ¥ and €, are shown in Fig.
1.

As shown by Shafranov,’ for a circular flux shell
of minor radius a, these relationships reduce to
two equations which can be solved for g, and p;
to yield

51 52+§Sl_éli7 (3)
’J'I:Sz—_ésl—%li’ 4)
where, neglecting higher-order terms in a/Rc,
271%R, S, = fwo(STr) “'B,2adS,, (5a)
211%S,= [, (8m)"'B,* cos 6ds,, (5b)

and dS,=27R (1 + ecosf)adf. In these equations
the total plasma current is given by

I4e) = V' @) B, /Br%.

Since the average pressure p is controlled by
auxiliary heating, Eq. (3) is regarded as a rela-
tionship connecting the variable p with the sur-
face integrals (B, ?) v S1y and S,. Once these
are determined, Eq. (4) yields p, as a function of
pand ;.

Since the problem centers around the calcula-
tion of the surface averages (5a), (5b), (5¢) at the
circular plasma boundary y=y,=const, we adopt
the circular flux-surface approximation

$=S(*), p?=(R-Ry)*+2% R,=R.+5(y), (6)

(5¢)
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describing a set of nested toroidal flux surfaces
with circular cross section where R, extends to
the center of the circular flux tube 3(p?), shifted
from the geometric center R, by an amount 6(y),
as shown in Fig. 1.

This model equilibrium contains two arbitrary
functions S(p?) and 6(3). S is determined from
flux conservation and () or 8'(y)=986/0y from
Eq. (3) after the surface integrals are performed.
A more complicated flux model with additional
free parameters such as ellipticity would require
additional moments of the plasma force-balance
equations to determine them.®

It follows from Eq. (6) that in our simple model,
RB,=|Vy|=208/D, (7)

where D=1+d cosf, d=2pSd'(y), and S=dy/dp?,
R=R,(1+&cosf), €=p/R,. The volume inside a
flux surface §=const is V(3)=27°0°R,. The inte-
grations of (5c) and the flux surface average of
R"?yield

I@)=pSe[1+3(ed)+...](1 —a®) 2,
V(R /4n?=(/208)(1 — 3&d +...).

(8a)
(8b)

The dots indicate higher-order terms in €.

As the flux surfaces shift outward under the in-
creased plasma pressure one expects that [d| be
comes of order unity at ¢ =¢,. Concomitantly, the
poloidal field (7) has a nonexpandable dependence
on cosd in marked contrast to the widely used
low-8 model”

B,=B,,(1+€Acosb).

As long as flux is conserved, the singularity is
approached asymptotically as the pressure is
raised. As shown below, the correct treatment
of the 6 dependence of B, eliminates any equilib-
rium limit on the poloidal 8. Using (8a), the re-
maining surface integrals are

S, 1= (a&$)*(1+&d)(1 —d?) "%, (9a)
s.2= B (uedy { T
& 1-(1-a®2| (9b)

F a-o7

The (1 —d?) ™" terms dominate the high-g equilib-
rium properties. For example, combining (92a)
and (8a),

S;=(1-ad?)""2»1 (10)
in the high-g flux-conserving equilibrium versus
S; ~1 in Ref. 4.
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Defining a pressure variable normalized by the
initial low-g toroidal current

Bi=2fdvp/2mR, 12,
we find for B, defined in (1a), using (8a),

Br_S2 1+3(ed)* 1-a?
B, ¢ 1+3(ed)? 1-d2

(11)

where the subscript i stands for the initial value
and €=a/R,. All quantities on the right-hand side
are evaluated at = y,.

From Egs. (3), (4), (9a), and (9b), large in-
creases in B can be produced if d— 1. One ex-
pects a small decrease in [; as B is increased
(d— 1) since the denominator of Eq. (1c) becomes
large while the numerator, which depends only
on an integral over (1 —d?)"2, remains finite.
Numerical calculations® confirm this and we ap-
proximate [, by its low-g value.

The functional form of S(p?) is specified by the
invariance of ¢(¥) in a flux-conserving system,
From Egs. (2) and (8b), ¢(¢) can be written as

a()=(F/2SR ){1-32d} . (12)

In general, F is a constant plus an order-j term.
Since ¢ is an invariant, S must also be an invari-
ant to zero order in 8. For similicity, we spe~
cialize to the case of ¢ constant on all flux sur-
faces, which implies that S is a constant to zero
order in 3,

S=,0°/a*+0(B), (13)
and we neglect the change in the functional form
of S as pressure is increased.

So far, all surface integrals have been evaluat-
ed for the circular flux model, Eq. (6), in con-
formity with the assumed circular boundary ¥ =,.
Nevertheless, interior flux surfaces near the
magnetic axis ¥ =0 exhibit strong elliptical and
weaker triangular deformations.” Consider a set
of shifted elliptic flux surfaces =S| (R-R,)*
+k()Z?], where x=1.%/1,” increases from a
small number at =0 to unity at §=¢,. In Ref. 2
it was shown that 6(¥)/a~ O(eB,) and i = Pod/dy
~0(e?B,%), in low-B ordering B;< €™*. Solov’ev’
discusses a class of arbitrary g8 equilibria; and
combining his Eqs. (2.26) and (2.29), we find near
the axis «(0) <3 for B, <2¢”’, in agreement with
numerical work.® For pressure and current pro-
files vanishing at the edge, the numerical work
indicates x(¢,)< k(0). The main effect of including
the ellipticity «(2) is to change the quantity D of
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Eq. (7) and one finds for the current
i -1
I(%)chde [1+ 4, T cos e} .

cosf+

Thus, for 0 < k<3 the dominant modification will
consist of the replacement of d by d;=d/(1 = k).
ds; rises faster with g than d does, thus produc-
ing a somewhat faster current rise, I (1
—dg%)"*”2, due to interior elliptical deforma-
tions. Thus, incorporating the effect of ellip-
ticity tends to enhance the effects found from the

circular flux-surface model, Eq. (6). Henceforth,

d should be understood to stand for d .

With our model completely specified, Eqs. (3)
and (4) serve to determine g, and ,. Neglecting
d, 2~€ terms and using Eqs. (9) and (11) with S
—S, , Eq. (3) assumes the form

}éli+EI (1 _dz)

__(1-a {[-
T (1+3zed) |

Yd+e€)+5(1+ed)]
( d2)3/2

_ g2\1/2
v %‘&%’“} 1)

which yields the desired relation between the
parameter d and the pressure variable B;, and,
in the high-B limit, reduces to

& (=d/e)(1-a?) ™32, (15)
Solved for d, the inversion of (15) for high B is

_dm[l _%(651)113]3/2, (16)

showing that @2~ 1 for B;~w as discussed above.
The low-8 limit follows from (12), B,=*8,.

To calculate 8, as a function of the pressure
variable B, in the high-g limit, we use Egs. (15)
and (16) to obtain

Br/By=1-d?=1-[1-3%(eB,)2/2]2, (17a)
In the regime €B,>1, this can be expanded to
yield

BI=€-2/3( e, (17b)
The pressure dependence of the plasma current
follows from (8a):

1Y), = K%/Rc for low B, (18a)
° /R (1-d)V2=(yy /R )(€B,) V3

for high 8. (18b)

From (4), one obtains for the diamagnetic param-

)

I 2,=Y5 (Ta/yo)x 5

O « M W d 0o N ©® W

o

10 20 30
B,
FIG. 2. The behavmr of B, , by, andI is shown as a
function of B; for e=%, 1;=3,

eter
#1+%li
~(1+3ed) e Hd+€) +3(1 +ed)] /(1 —a?)V/?
+d"%(1+%ed)"?[(1-d?) 2 =(1-d?)]. (19a)
In the high-B regime (-d/e>1, d*-~1),

B3~ =(d/e)(1-d3)"V2=(1-d?)B,>0, (19b)

where the dependence of d on pressure is given
in (16). Comparing this with (17a) shows u;~8;
in asymptotic agreement® with Eq. (40) of Ref. 4.

An upper bound for u, exists as [dVB /B %2
-0, or, equivalently, 8—~1. With 8=1, from Eq.
(17b) we find 2 maximum B,=qg?3€"%3,

The exact behavior of 8;, u,, and the plasma
current I(¢,) as a function of the pressure vari-
able B, is shown in Fig. 2.

Summary.— (1) When the average pressure
[dVp/V is increased by auxiliary heating on a
flux-conserving time scale, the equilibrium
equations of an axisymmetric toroidal plasma
permit a continuous transition from low to high
values of B. (2) In a flux-conserving equilibrium,
the plasma current increases with pressure as
(eB))? [Eq. (18b)]. (3) Consequently, the poloid-
al B grows slower than linearly with pressure,
and the frequently used scaling relation ﬁ,=q23/
€? does not apply for flux-conserving tokamaks.
1t is replaced by (17b) asymptotically. (4) The
flux-conserving equilibria considered in this
paper do not permit formation of a second mag-
netic axis, since B, does not vanish on the outer
flux surface [see Egs. (7) and (16)]. Thus, there
is no equilibrium limit such as implied by the
condition B, < ¢€"! obtained for flux-nonconserving
equilibria.!® (5) In the high-B limit, the diamag-
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netic parameter u; approaches 8;, implying con-
finement by the toroidal diamagnetic well. At the
ultimate limit B=1, B;=¢*3" %2,

We thank L. A, Berry and H. P, Furth for their
invaluable criticism of the initial formulation of
the ideas contained in this paper. One author
(D.J.S.) is grateful to Professor V. D. Shafranov
for several discussions.

*Research sponsored by the U. S. Energy Research
and Development Administration under contract with
Union Carbide Corporation and Massachusetts Institute
of Technology.

'H. P. Furth and S. Yoshikawa, Phys. Fluids 13,
2593 (1970).

%J. M. Greene, J. L. Johnson, and K. E. Weimer,
Phys, Fluids 14, 671 (1971).

3H, Grad, P. N. Hu, and D. C, Stevens, Proc. U. S.
Nat. Acad. Sci. 72, 3789 (1975).

%y, D, Shafranov, Plasma Phys, 13, 757 (1971).

5J. D. Callen and R. A. Dory, Phys. Fluids 15, 1523
(1972).

L. E. Zakharov and V, D. Shafranov, Zh. Tekh, Fiz.
43, 225 (1973) [Sov. Phys. Tech. Phys. 18, 151 (1973)l.

V. D. Shafranov, in Reviews in Plasma Physics, ed-
ited by M. A. Leontovich (Consultants Bureau, New
York, 1966), Vol. 2, p. 125; L. S. Solov’ev, in Reviews
in Plasma Physics, edited by M, A. Leontovich (Ple-
num, New York, 1975), Vol. VI, p. 263.

8R. A. Dory and Y.-K. M. Peng, ORNL Report No.
ORNL/TM-5555 (to be published).

Note, however, that because of Eq. (10), Eq. (41) of
Ref. 4 is not valid for high-B flux-conserving equilibria
for the reason given after Eq. (8b).

3, Yoshikawa, Princeton Plasma Physics Laboratory
Report No. MATT-1261, 1976 (unpublished).

Model of the Ferroelectric Phase Transition in the Tetragonal
Tungsten-Bronze-Structure Ferroelectrics
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A microscopic model is presented for the ferroelectric phase transition in the tetragon-
al tungsten-bronze—structure ferroelectrics (e.g.,Sr;-,Ba,Nb,Og which, for the first
time, provides a description of its essential features, including the fact that it is a dis-
placive transition but has no “soft”’~phonon mode. The model employs an interaction be-
tween the ferroelectric phonon displacement and local structural changes, which are im-
portant in these materials; and it describes well important features of the Raman spec-

tra, dielectric constant, and refractive index.

There is at present no basic understanding of
the physical mechanism of the ferroelectric phase
transition for the large class of technologically
important ferroelectrics in the tetragonal tung-
sten-bronze T'1 structure' [e.g., Sr,.,Ba, Nb,O,
(SBN), and Ba,., Na,. 5, Nb,;,O,,]. A model, which
is based on the interaction of the ferroelectric
phonon with specific local structural changes that
are important in these disordered® materials, is
presented and shown to account for this transi-
tion.

The tetragonal tungsten-bronze (TTB) T'1 struc-
ture consists of a network of distorted NbO, octa-
hedra [shown in Fig. 1(b)] connected together in
such a way that there are pentagonal, square, and
triangular “tunnels” which can be occupied by the
Ba and Sr ions? of SBN. Ba and Sr ions are ran-
domly distributed in the pentagonal tunnels, and
Sr is randomly distributed in the square tunnels
(but neither kind of tunnel is completely occupied).
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As the temperature is lowered through the ferro-
electric T, the metallic atoms (including Nb) dis-
place along the ¢ axis into the oxygen layers.? Al-
though this transition is displacive, it does not
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FIG. 1. Structure of tetragonal tungsten-bronze ma-
terials projected on the ab plane. Pentagonal, square
(and triangular) cells contain Ba, Sr, Na, etc. ions.
(a) is T2 phase and (b) is 71 phase. Square shows “unit
cell” which is rotated in going from the T1 to the T2
phase.



