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Differential cross sections for the rotational exciation from j=0 to j=1 of HD mole-
cules in collisions with Ne atoms have been measured in a crossed molecular beam ex-
periment. The inelasticity is obtained by time-of-flight analysis of the scattered parti-
cles using the pseudorandom chopper method. The measured cross sections of 0.31 to
0.45 A'/sr at energies of about 30 meV and angles between 40 and 80' prove very sensi-
tive to the angle-dependent part of the interaction potential as shown by a comparison
with calculated data.

In atom-molecule collisions the most impor-
tant energy transfer process at low energies oc-
curs between translational and rotational degrees
of freedom. The cross sections for this energy
transfer depend on the angular part of the inter-
action potential. The direct measurement of the
differential cross section for single rotational
quantum transitions in a crossed molecular beam
experiment provides the most detailed informa-
tion on this anisotropic part of the potential. '

Up
to now, such detailed cross sections have only
been observed in the scattering of molecules on
ions, ' mainly because ions are easy to detect and

easy to select for energy. For neutral particles
all experiments performed on rotational excita-
tion, with the exception of an early attempt on D,
+K,' display unresolved transitions' so that part
of the advantage of such experiments is lost.

We have carried out a molecular beam experi-
ment with a universal detection system in which
we succeed in resolving single rotational transi-
tions, measuring the differential cross section of
HD molecules scattered by Ne. The inelasticity
is detected by time-of-flight (TOF) analysis of
the scat'tered particles. The choice of this sys-
tem was guided by the desire (1) to use a simple
molecule in order to compare the results with ab
initio calculations of the potential and in order to
test quantum mechanical procedures for the cal-
culation of the cross section; (2) to take advan-
tage of the large energy-level spacings of hydro-
gen. The intensity loss compared to an elastic
scattering experiment involved in such a high-
resolution TOF experiment was compensated for
(1) by using intense nozzle-beam sources with
small angular and energy spreads, (2) by work-
ing at a very low background pressure in the de-
tection region (- 10 "Torr), and (3) by applying
the pseudorandom chopper method in the TOF
part which provides high resolution with small

loss of intensity.
The apparatus' is shown schematically in Fig.

1. A supersonic nozzle beam of HD (speed ratio
S = 23) is crossed by a nozzle beam of Ne (S = 16)
at an intersection angle of 90 . The two beams
are formed in two different differentially pumped
chambers by expansions at 2000 Torr stagnation
pressure from 0.04-mm-diam nozzles. The two
skimmers have openings of 0.7 mm each result-
ing in an angular divergence of 2.0 for the pri-
mary and 8.0 for the secondary beam. The rela-
tive velocity has a distribution of 8% full width at
half-maximum (FWHM). The temperature of the

primary beam can be varied between 77 and 300
K in order to achieve different populations in the
low-lying j states. The temperature of the sec-
ondary beam is kept at 300 K. The scattered par-
ticles are detected on mass m = 3 amu by a double
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FIG. 1. Schematic of the crossed molecular beam
apparatus. The numbers give the pressures in the dif-
ferent chambers in torr. The flight path s is 45 cm.
The angular dependence of the differential cross sec-
tion is measured by rotating the two source chambers
with respect to the stationary detector.
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differentially pumped quadrupole mass spectrom-
eter utilizing electron-bombardment ionization
and ion counting. The angular dependence of the
cross section is measured by rotating the two
source chambers, which are mounted on a com-
mon platform, with respect to the stationary de-
tector assembly. In order to increase the duty
cycle (fractional opening time) of the TOF spec-
trometer without losing resolution, the pseudo-
random chopper method is used. ' The scattered
particles are modulated with a pseudorandom bi-
nary sequence by chopping the beam with a me-
chanical disk containing the appropriate pattern
of slots and tabs in four sequences each with 127
elements. This arrangement provides a resolu-
tion of 4 ps at a cycle frequency of 492 Hz based
on the smallest slot of 0.89-mm width with a duty
cycle of 0.5. The measured signals are stored in
a TOF analyzer with a channel width of 2 p.s which
is directly interfaced to a minicomputer. The de-
sired TOF spectrum is then obtained by an on-
line computation of the cross-correlation of the
signal with the pseudorandom pulse train.

Figure 2(a) shows the Newton diagram of the
scattering process for the laboratory angle of 8
= 50'. For source temperatures of 92 and 300 K
of the primary and the secondary beam, respec-
tively, the elastically scattered HD molecules
have a velocity of 1895 m/s after the collision
whereas the particles which are excited from j
=0 to j=1 are found at 1621 m/s. Thus the reso-
lution provided by the TOF spectrometer (45-cm
flight path) is ~t/t=2. 0/p which corresponds to 38
m/s, far beyond the desired 274 m/s or 14.5Q
necessary to resolve this transition. The total
velocity resolution of the apparatus is mainly de-
termined by the width of the two nozzle beams of
8% FWHM since other effects like the finite length
of the ionization region (17 mm) and the angular
acceptances of scattering volume and detector (7
x10 ' rad) can be neglected compared to this
spread. ' The TOF spectrum for this system is
displayed in Fig. 2(b) after a measuring time of
1.5 h. The expected peak locations for the elas-
tically and inelastically scattered particles are
marked by arrows and agree well with the meas-
ured peak location. The 0-1 transition peak is
clearly resolved. The number of scattered par-
ticles is only 1%%d of the background, which is sup-
pressed in the figure.

To reduce the TOF spectra to differential cross
sections in center-of-mass (c.m. ) coordinates
three steps are necessary. (1) Relative intensi-
ties are extracted from the measured histogram.
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FIG. 2. (a) Newton diagram for elastic and rotation-
ally inelastic collisions of HD (source temperature, To
=92 K) from Ne (T() =300 K). (b) Time-of-flight spec-
trum for the same process obtained after 1,5 h meas-
uring time. Note that the total background is sup-
pressed.

(2) The relative distribution of rotational states
in the nozzle beam is calculated from the mea-
sured data of the nozzle beam, accounting for the
fact that beam temperature and rotational tem-
perature differ from each other and from the stag-
nation temperature. ' (For the operating temper-
ature of the primary beam of 92 K all of the beam
particles are in the j = 0 state. ) With angles and
velocities transformed to the c.m. system, these
two numbers give relative differential cross sec-
tions. (3) The absolute value is obtained from
the measured elastic cross section. The angular
dependence of these cross sections displays well-
resolved diffraction oscillations which are used
to fix the absolute value via a careful determina-

681



VOLUME )8y NUMBER 1$ PHYSICAL RKVIKW LKTTKRS 28 MARcH 1977

TABLE I. Differential cross sections for j=0 to j=l
of HD scattered from Ne.

z
(meV) (deg)

do/dQ
(A2/sr)

C

28,6
30.3
30.3
30.3

64.0 0.40 (5) 0.192 0.347 0.432 0.435 0.385
40 0 0 31(5) 0 136 0 266 0 316 0 319 0 343
64.1 0.43 (3) 0.216 0.363 0.451 0.457 0.406
80.6 0.45(8) 0.268 0.417 0.529 0.538 0.450

'Experiment; absolute value obtained from experi-
mentally determined isotropic potential Vo.

Calculated by the coupled-states method (basis j
=0, 1,2, 3) for the potentials published by (b) A, Gelb
et al. , J. Chem. Phys. 57, 3421 (1972); (c) experimen-
tal Vo, V& from J. W. Birks et al. , J. Chem. Phys. 63,
1741 (1975); (d) K. T. T~~g and J. P. Toennies, to be
published; (e) L. Zandee et 4., Chem. Phys. Lett. 37,
1 (1976); (f) K. R. Forster and J. H. Rugheimer, J.
Chem. Phys. 56, 2632 (1971).

in terms of the derivative of the isotropic part,
Vp', and the anisotropi c part V, and its deriva-
tive V,' with respect to the coordinates B' of the
homonuclear case." 5 is the displacement of the
center of mass from the center of the molecule.
Test calculations performed by solving the coup-
led equations utilizing the coupled-states method"
with a basis of four states indicate that sufficient
sensitivity is left for the determination of the V,
term. A variation of the ratio of V,/V, from 0.6
in the repulsive region to 0.3 in the attractive re-
gion changes the ratio of the differential cross
section for j = 0- j = 1 to the cross section for j
=0- j=0 from 17.4% to 28.6%. We have per-
formed calculation of the measured cross section
for some of the recently published potential mod-
els for this system obtained from ab initio or

tion of the interaction potential from the mea-
sured data. ' The resulting values obtained from
the plotted TOF spectrum are given in Table I to-
gether with some other results at different angles
and energies. The inelastic cross sections in-
crease with increasing angle and, to a much
smaller extent, also with increasing energy.

These cross sections for a 6j =1 transitions
should be very sensitive to the anisotropy of the
potential, in particular to the U, (R) term of the
usual expansion of the potential into Legendre
polynomials, U(R, y) =Q» U» (R)P»(cosy). U, (R)
is given by

U„(R ) = (5/R)[ RV, ' —pV—, —pR V, ' j,

semiempirical calculations, spin-lattice relaxa-
tion data, and molecular beam measurements
with oriented molecules. The results, also given
in Table I, clearly indicate that even our prelim-
inary data are able to discriminate between these
potentials. In conclusion we may state that the V,
potential in the region probed by our measure-
ment (2.8 to 4.0 A) has a very shallow attractive
minimum of —0.2 meV (compared to —2.75 meV
of V, ) at about 3.8 A, starts to become repulsive
at about 3.2 A, and reaches 2 meV at 2.9 A. Fur-
ther measurements on other angles and energies
will exploit the anisotropic potential to a much
larger extent. Since the resolution of the appara-
tus is good enough to extend the measurements to
other light molecules, these experiments mark
the starting point for a series of precise deter-
minations of the anisotropic potential for some
important atom-molecule and molecule-molecule
systems.
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