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The model, if valid, mould best be applicable to
the energy region in the spectrum of a composite
particle above 100 MeV/nucleon. Unfortunately,
no data exist at present in the appropriate range
for the composite particles. It therefore would
be interesting to have such data to see whether
a high-energy thermal component is present, and
if so, to use it to extract the thermal properties
of the fireball.
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It is rigorously demonstrated that the nonrelativistic H ion has only one bound state in
the fixed (infinite-mass) nucleus approximation with Coulomb interactions only.

The H ion, made up of a, proton and two electrons, has long been known to have one bound state. ' Ad-
ditional bound states have never been found, but their nonexistence has so far not been proved. The
present note provides the proof in the fixed (infinite-mass) nucleus approximation with Coulomb inter-
actions only. The importance of the present result stems from the qualitative difference between the
bound-state spectrum of negative ions (of which H is the simplest example) and the bound-state spec-
trum of positive ions and neutrals. Negative ions have only a finite number of bound states, for which
correlation effects are decisive (H, for example, is believed to have no bound states in Hartree-Pock
approximation). Positive ions and neutrals, on the other hand, have an infinite number of bound states.

The nonrelativistic Schrodinger equation for two electrons interacting with each other and with a
fixed nucleus of charge Ze via Coulomb forces can be written in the form H I() =FI (), where H =H, + V,
with

H, (r»r»r, ', r, ') = (- V,' —2Zr, ' —V,' —2Zr, ')5(r, —r, ')5(r, —r, ')

V(r„r»r, ', r, ')=2(r, —rJ '5(r, —r, ')5(r, —r, ').
Atomic units have been used and continuous ma-
trix notation adopted for later convenience.

Proving the nonexistence of bound states re-
quires a method which provides lower bounds to
energy eigenvalues. The basic tool to be used
here is a well-known comparison theorem. 4

7 heo~e~ ~.—Let H'~ and IJ'~ be two Hermitian
Hamiltonians whose discrete eigenvalues below
the continuum can be characterized by the famil-
iar variational principle 8 = min(( IH I ()(( I P) ',
with the minimization for excited states carried
out subject to the constraint that I g) be orthogo-
nal to preceding eigenvectors. Denote the or-

(2)

dered eigenvalues of H~'~ by E, '-E, ' -. . . -E„'
. . .~E, ', where E, is the energy at which the
continuous spectrum (if any) begins. Then if
((IH' I() ~ ((IH' Ig) holds for all admissible
state vectors I g), Z„"' ~Z„'2 holds for all n, and

E, ') ~E,'. The result of the present paper will
be obtained from theorem 1 by letting H H Hp
+ V while H' is something more tractable.

The lower-bounding Hamiltonian H ' will be
constructed by generalizing a method introduced
by Bazley' to construct lower bounds to helium
eigenvalues: Replace V in H~ ~ =H =Hp+ V by
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V' 'PV' ', where P is a projection operator. The
positive square root of 2!r, -r, l

' is to be taken
when constructing V"'. The fact that a projec-
tion operator such as P cannot increase the length
of a vector such as V"'I () implies that (( IV"'
x P V"'I () ~ () IV I (). The eigenvalues of Hb~ =H,
+ V' I'V' are then lpwer bpunds tp the eigenval-
ues pf H. Bazley constructed his V PV by
starting with the low-lying eigenvectors I $,.) of
H p and using Schmid t or tho gonaliz ation to con-
truct vectors 1$,.') such that (),. IV '1$, ') = 5, ,
His V P V then tppk the fprm

for small finite N.
The discrete spectrum of H„given by

z ~»=-z'(~ 2+~ -~) (3)

where (n„n,) is any pair of positive integers, is
known from the theory of the hydrogen atom. Be-
cause the two-electron system can dissociate into

!
a free electron plus an electron bound in a hydro-

genic ground state with energy —Z', both H, and
H =H, +V have a continuous spectrum beginning
at —Z'.' The spectrum (3) has an infinite num-
ber of levels belonging to pairs of quantum num-
bers of the form (1,n, ) and (n„ 1) which lie below
—Z and accumulate at —Z . In order to prove
that H=H, +V has only one bound state for Z=1,
V' 'PV' ' must contain enough of the original re-
pulsive V to push all but one of these levels up to
—1; in particular V"~PV" must couple to all of
these levels of H, which lie below the continuum.
Stated another way, V"'PV' ' must retain enough
of the original V to preserve shielding: If one
electron is in a hydrogenic ground state with the
second electron far out, the far-out electron
must see, after the replacement of V by V"'PV"',
a potential which cannot support an infinite num-

ber of bound states. The Schmidt orthpgonaliza-
tion used by Bazley' to construct his V' PV'
will clearly not work here, because it produces a
V' PV' which cpuples only a finite number pf
low-lying states of H, .

A suitable V' PV' fpr use in the lpwer-bpund-
ing Hamiltonian H" =H, + V' 'PV' ' can be con-
structed by introducing

Vi(r» ra~ ri'
~ r~') -=U(&i)6(ri —ri')& i(&a)& i*«2')

V,(r„r„r,', r, ')= p, (r~)pi*(ri')II(r, )~(r, —r, '),

y, (~) =Z"'m "'exp(-Zr)

is the normalized hydrogenic ground-state wave function and

U(~) = [f 21 r-r'IIV, —(~') I'd'~'] '.

(6)

V, can be obtained by applying Bazley's Schmidt orthogonalization procedure to vectors which are ei-
genfunctions of the position operator in r, and hydrogenie ground-state functions in r, . Both Py V

xV,V "' and P, = V "'V,V "' are projection operators. Neither V, nor V, alone couples to all levels
of H, below the continuum, but V'I'PV' ' will couple to all levels of H, below the continuum (actually,
to everything below —Z'/2) if P is chosen to be the projection onto the span of the ranges of P, and P,
This P is given by

P = —,(P, +P,)+—,Q Q(I P,)P, ;K;"P,-;(I-P,), .
n=p i= j.

where K; is the Hilbert-Schmidt kernel

K] =P iP;I'
and I is the identity operator. It is straightfor-
ward to verify that P is Hermitian, that PP,
=P,P =P„ that PP, =P+=P„and that P =P.

Convergence of the infinite series of operators
in P is implied by the following observations.

!
(1) Since K,. is a product of projection operators,
its eigenvalues cannot exceed l. (2) Eigenvectors
of K,. with eigenvalue 1 must be simultaneous ei-
genvectors of the projection operators P, and P2.
(3) Such simultaneous eigenvectors are annihil-
ated by (I P;)P, , and its-adjoint. (4) Since K,.
is Hilbert-Schmidt, its eigenvalues cannot ac-
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cumulate at 1. Thus only eigenvalues of K,. which
are strictly less than 1 contribute to the sum in
P, which therefore converges by comparison with
the geometric series.

It should be noted that the terms in the sum in
P have either the form A'A or the form A'QA,
where Q is a projection operator. Expectation
values of such terms cannot be negative. Thus
lower bounds to the eigenvalues of H =H, + V are
obtained even if all but a finite number of the
terms in the infinite sum in P are discarded.

The eigenvalue problem for H, +V' 'PV"' is
simpler than the eigenvalue problem for H =H,
+V. Let S~ be the space spanned by functions of

the form

0 (r„r ) =f(r,)y, (r )+q,(r,)f(r ), (10)

S„ the space spanned by functions of the form

g~(r» r,) = g(r, )cp, (r~) —y, (r,)g(r, ),
and S~ the orthogonal complement of S~U S~.
Each of the spaces S~, S~, and S ~ is mapped into
itself by H, +V' 'PV"'. V"'PV' ' is zero on S
so that eigenfunctions in S~ have their eigenval-
ues given by (3) with n, &2, n, &2. All of these
lie above —Z'/2 and are therefore not relevant
here.

The eigenvalue problems for H, + V"'PV"' on

S~ and S„are equivalent to the following one-
particle eigenvalue problems for f and g:

II, —zv, +U+[,'z'-(16-z/35)]le, &&y,l+2U"'~"U"']lf'&=(E+z')(I-lie', &&a J)lf'&,
4 n=1

where

(12)

If'&= (I+le,&&v,l&)lf &

(I- Iv,&&v,I)9.-zv. +U+EU"'(-~)"U"0(I-Im,&Q,I)lg&=(E+z')(I- Iw, &&a,l)lg&
n=1

Here

@,(r, r') = -V'5(r -r'),

V,(r, r') =2r '5(r-r'),
(15)

(16)

I is the identity, and ly, & and U are given by (6) and (7), respectively. M is the Hilbert-Schmidt kernel

M(r, r') =n, (r)k, (r') —u(r, r'), (17)

where

h, (r) =(32Z)"'[35U(r)] "'p (r).

(20)

It is straightforward to verify that h, is a normalized eigenfunction of the kernel k with eigenvalue 1.
The following argument shows that all eigenvalues of M are nonnegative: The kernel k has the repre-
sentation k =k, —k„where

&,(r, r') =-' [U(r)]"'V', (r)(1+r)(1+r')V, *(r') [U(r')]"'

k,(r, r')=-'[U(r)]"'y, (r)((l-r)(1 r')+w 'J(-lr —r"I '-r ')(lr' —r"I ' r' ')d'r"}-

(21)

are integral operators with nonnegative expectation values. Theorem 1 implies that the eigenvalues of
k are bounded above by the eigenvalues of k, . But k, has only one positive eigenvalue. Hence k has on-
ly one positive eigenvalue, which must be the eigenvalue 1 associated with the eigenfunction h, . There-
fore all eigenvalues of M are nonnegative. This fact plus theorem 1 implies that the eigenvalues of

[h —x(v —U)] I
f'& = (E + 1)(I—~zip „&&/ J)l f'& (22)
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for 1=1 are lower bounds to the eigenvalues of (12) and (14) for Z =1 (for H ). Equations (22) and (23)
are obtained from (12) and (14), respectively, by setting Z = 1 and discarding terms whose expectation
values are nonnegative.

The number of bound states of (22) and (23) can be counted by the standard trick of sitting at the bot-
tom of the continuum, cranking up the coupling constant ~, and counting the bound states as they come
in. ' One sets E = —1 and lets X be the eigenvalue; the number of eigenvalues X which do not exceed 1
is then the same as the number of bound states for & = 1. Since (22) and (23) are spherically symmetric„
one-particle equations, the number of eigenvalues ~ which do not exceed 1 can be counted by decompos-
ing in partial waves and using standard methods for one-dimensional problems. In this way it can be
shown that (22), and therefore also (12) and the singlet state of H, has one bound state, while (23),
and therefore also (14) and the triplet state of H, has none.

The methods outlined here can also be used to calculate lower bounds to those bound states of two-
electron atomic systems which do exist. Numerical results of such calculations and additional details
of the present proof will be published elsewhere.
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