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Thermodynamic Model for Composite-Particle Emission in Relativistic Heavy-Ion Collisions*

A thermodynamic model, constructed in the
model, is proposed and used to study the spe
can be seen in relativistic heavy-ion collision
properties of the thermodynamic equilibrium

In this Letter, properties of the spectra of
high-energy composite particles emitted in a rel-
ativistic heavy-ion collisions" are studied in the
framework of a thermodynamic picture whose
foundation is based on the big-bang equilibrium
model. ' The basis of the model to be discussed
is the nuclear fireball picture used to describe
proton inclusive spectra. ' In this picture, nu-
cleons mutually swept out from the combined sys-
tem of target and projectile form an equilibrated
fireball which then expands freely. The results
of this model' fit the gross features of the proton
inclusive spectra for 400-MeV/nucleon Ne" and
He4 on uranium for proton energies above 80 MeV.

On the other hand, the composite-particle spec-
tra seen in the same experiments have been in-
terpreted in terms of a model in which nucleons
with small relative momenta coalesce." Specifi-
cally, this model imposes a momentum-space
restriction for formation of composite particles;
and this restriction, in turn, leads to correla-
tions in energy and angle between double differen-
tial cross sections of composite particles and
powers of the corresponding proton cross sec-
tions. These features are borne out in the experi-
mental results as shown in the figures of Ref. 1.
Now, within the framework of the coalescence
model, ' no explicit reference has been made to
the spatial evolution of the cascade nucleons and
to the possible equilibration properties that they
may have. It is this aspect and its consequences
that will be investigated in this paper.

Since a detailed description of an expanding col-
lection of strongly interacting nucleons raised to
a high temperature (the fireball) is impossible,
simplifying assumptions or idealizations have to
be made. Here, the idealization is based on the
three phases that this collection goes through in
its expansion. First, when densities and temper-
atures are high, mean free paths are short (to
=1 fm or less), and collisions are then frequent
in the bulk of the material, causing scattering to
all possible states (continuum and bound), with

framework of the big-bang equilibrium
ctra of high-energy composite particles that
s. Properties of the spectra are related to
region.

composite-particle formation and break-up having
its equal place in the system. In this phase, a
temporal thermodynamic equilibrium could per-
haps be established. In a second stage as the col-
lection of these nucleons and nuclei expands, non-
equilibrium few-collision processes dominate un-
til the density is so low that a third phase is
reached in which all collisions cease and the gas
expands freely.

Now, as a working idealization, we replace
this complicated evolution with a much simpler
one in which the fireball expands through a set
of equilibrium states until a volume V, or den-
sity p is reached, after which all collisions cease
instantaneously. The system then expands freely.
This idealization leads to a framework for the
model that is analogous to that of the big-bang
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FIG. 1. The r atio of d, t, e to p as a function of the
thermodynamic volume Vo or density p™. The evaluation
is for kTO = 50 MeV and for Z = 80, F' = 80, which are
typical values in Ref. 2. For sixty nucleons, normal
nuclear matter with density po ——0.15 nucleons/fm oc-
cupies a volume 400 fm~. From the figure, we note
the persistence of a large d/p ratio even in diffuse re-
gions. A small observed d/p ratio could indicate a dif-
fuse p. A large o/p ratio could indicate a dense p.
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equilibrium model. Here, no attempt is made to justify the model, but only to explore its consequenc-
es and its possible relevance to relativistic heavy-ion collisions.

Under the assumption that thermodynamic equilibrium is established in a volume VO and at a tem-
perature To, the number of nuclei N, [Z, N] in equilibrium is determined by statistical factors alone
and is'

where X(T)=bc(27)m~c'kT) '~', A=Z+N, and

f(Z, N) =A'~'exp [Eo(Z, N) /kT, ]g,.(2S,. +1) exp(-E, /kT, ).. (2)

The above equations are applicable in the high-temperature and low-density limit. The summation is
over the ground and excited states of the nucleus (Z, N), with S,. being the spins of these states and E,
being their excitation energy measured from the ground-state energy E,(Z, N). N, [1,0] and N, [0, lJ
are, respectively, the number of protons and neutrons in V, at equilibrium. If we define Z and N as
the initial numbers of protons and neutrons, respectively, in the fireball, the following auxiliary con-
ditions must be satisfied:

d No[Z, N; P]/d'P =No[Z, Ã] exp(-E~/kTo)(2)TAm~kTO) 3~',

where Ez P'/2m„ is—-the total kinetic energy of the nucleus [Z, N] whose abundance N, [Z, N] is deter-
mined by Eq. (1).

At this point a formal correspondence with the results of the coalescence model can be made. In
this model, the momentum phase-space restriction that composite particles be constructed from nu-
cleons whose momenta lie within a sphere of radius I'0 of each other leads to'

(4)

No [Z, N] = Z; Q NNO [Z, NJ =N .
S,N S,N

It is worthwhile to point out that the high temperature involved (k T, = 50 MeV from inclusive proton
spectra') greatly weakens the dependence of the abundance on the traditional Boltzmann factor. An ex-
ample of the abundance ratios is shown in Fig. 1 and discussed in the figure caption.

Next, the momentum distribution of the individual species of this composite gas is given by the Max-
well-Boltzmann distribution in the rest frame of the fireball; thus,

d2n[Z, NJ 2S„+1 1 ~ 47)', d n[1, 0]
I 2dP'dn —

2A 1¹f P, t 3 y O' I 2dp'dn (5)

The P„ is the momentum per nucleon, d'n [Z, N] /P„'dP„dQ is the number of nuclei [Z, N], or protons
[1,0], per event per unit element of phase space; y = (I +P„'/m~')'~' and Az, = (Nz+N, )/(Z&+Z, ), where
the target is [Z„N, ] and projectile is [Z, N ]. In Eq. (5) we have explicitly included the spin-align-
ment factor (2S„+1)/2 between the individual nucleons and the composite [Z, N] (implicit in Ref. 1).
Now, it is interesting to note that the result of Eq. (5), relating the momentum-space density of the
composite system to powers of the proton density, is also a feature of the equilibrium model. Specifi-
cally, Eq. (4) can be rewritten as

d No[Z, ¹,P] f(Z, N) ~ k' ' d No[1, 0; P„]
A'I' dP dQ A'i 2" V 2d~ (6)

where P„'/2m~ =E~/A and where R, =No(0, 1]/No[1, 0]. In obtaining Eq. (6), we have used the result
A'I'„'dP„=I"dP, where P is the total momentum. Thus, the equilibrium model has all the essential
features of the coalescence model since Eq. (6) is formally similar to Eq. (5). However, a difference
exists (apart from combinatorial and phase-space factors), which is that the proton density in momen-
tum space in the thermodynamic model is fixed by Eq. (4) to be the equilibrium thermal distribution.

Next, the double differential cross sections for protons and composite particles can be obtained as
follows. For each impact parameter b (suppressed until now), the number of nucleons in the fireball
generated by the geometrical sweeping of the projectile over the target, the velocity P of the fireball,
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and the energy available per nucleon e in the center-of-mass system of the fireball can be calculated
as outlined in Ref. 2. This procedure defines a set of quantities Z(b), N(b), P(b), and e(b) = —,'kT, (b).
Then from Eqs. (1)-(3), the values of N, (Z, ¹ b] can be evaluated as a function of V, (b). The V,(b)
should satisfy [Z(b)+N(b)]/V, (b) = p, the thermodynamic density, which is to be taken as independent
of b. The momentum-space density in the rest system of the fireball then follows from Eq. (4). This
result can subsequently be transformed to the laboratory system and from P'dP space to dE space. The
double differential cross sections follow when the resulting expression is integrated over impact pa-
rameters.

The above scheme outlines a mell-defined operational procedure for calculating double differential
cross section of composite particles in a specific model. An interesting feature of the model arises
when the weak impact-parameter dependences of T,(b), P(b), and N, [0, 1; b] /N, [1,0; b] —=R,(b) are ne-
glected. In this approximation, the composite-particle cross section can be written as

d (T[Z~ N] ~gp f(Z~ N) —g b p~ ( ( )]~ ~ d 0[1~ 0']

Here,

[f(t, 8)] '= [t(&+2m~)] ' y(t+m~ —P(t(t+2m~)]' 2cosp}

with t the kinetic energy per particle, G~ = I2mbN, —[1,0; b] db, and p~ =NO [1,0; b] /V, (b); T» P, y = (1
—jP) '~', and p, are the constant values of these quantities. The result of Eq. (7) is of the form of the
coalescence result, [Eq. (2) of Ref. 1]. It thus contains the same correlation in energy and angle be-
tween composite-particle cross sections and powers of the proton cross sections. However, some de-
parture in correlation is introduced when the impact-parameter dependence of T, and g, are consid-
ered. Moreover, the result allows a formal identification

(
4P3 3

30'o

t

where 0, is the total reaction cross section.
In Eq. (7), the proton cross section is not to be

taken from experiment, but is to be calculated by
use of the procedure just outlined. Thus, in en-
ergy regions where the calculated proton cross
sections differ from the experimental results, '
we can expect, in general, that the calculated
composite-particle cross sections will also differ
from experiment, since they are correlated to
powers of the proton cross sections. Consequent-
ly, a detailed comparison of the predictions of
this model with experiment will not be made at
this time since the composite-particle cross-sec-
tion data' a.re in energy regions (less than 100
MeV/nucleon) where large departures from a
clean high-temperature thermal spectrum (fire-
ball spectrum) for protons are present. These
departures are believed to be due to the remnants
of the target contributing to the spectra. ' More-
over, the use of the identification given in Eq. (8)
to obtain properties of the fireball density at
"freeze-out" through the extracted P,'s of Ref. I
can also be misleading since the Pp s of Ref. 1
refer to the composite-particle spectra for ener-
gies less than 100 MeV/nucleon. Nevertheless,
it is interesting to pursue this correspondence
further. With use of the extracted P,'s of Ref. I

(8)

for the 400-MeV/nucleon Ne" and U data, values
of p, follow when use is made of the approximate
scaling p~/G~=p~/G~ so that p~=Z(b)/V, (b) and

G~ = f2mhZ(b)db =4800 fm'. The resulting values
depend on the composite particle and are p, /p,

3 3 p
and —,

' for a, t, and d respectively,
where p, =0.075 protons/fm' is the nuclear mat-
ter density of protons. If the above values of Po
were appropriate in the energy range above 100
MeV/nucleon, then the conclusion could he drawn
that there does not exist a single set of equilibri-
um conditions that would consistently explain all
the cross sections. It is interesting to note that
these "freeze-out" densities are slightly less
than the central density of the corresponding com-
posite system. Thus, if higher-energy composite-
particle data result in the same values of P, giv-
en above, a model could perhaps be developed
which incorporates the correlation between the
"freeze-out" density and the central density of
the composite.

In summary, a thermodynamic model whose
foundation is based on the equilibrium big-bang
model is investigated to see whether it has any
relevance to the composite-particle spectra that
can be seen in relativistic heavy-ion collisions.
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The model, if valid, mould best be applicable to
the energy region in the spectrum of a composite
particle above 100 MeV/nucleon. Unfortunately,
no data exist at present in the appropriate range
for the composite particles. It therefore would
be interesting to have such data to see whether
a high-energy thermal component is present, and
if so, to use it to extract the thermal properties
of the fireball.
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It is rigorously demonstrated that the nonrelativistic H ion has only one bound state in
the fixed (infinite-mass) nucleus approximation with Coulomb interactions only.

The H ion, made up of a, proton and two electrons, has long been known to have one bound state. ' Ad-
ditional bound states have never been found, but their nonexistence has so far not been proved. The
present note provides the proof in the fixed (infinite-mass) nucleus approximation with Coulomb inter-
actions only. The importance of the present result stems from the qualitative difference between the
bound-state spectrum of negative ions (of which H is the simplest example) and the bound-state spec-
trum of positive ions and neutrals. Negative ions have only a finite number of bound states, for which
correlation effects are decisive (H, for example, is believed to have no bound states in Hartree-Pock
approximation). Positive ions and neutrals, on the other hand, have an infinite number of bound states.

The nonrelativistic Schrodinger equation for two electrons interacting with each other and with a
fixed nucleus of charge Ze via Coulomb forces can be written in the form H I() =FI (), where H =H, + V,
with

H, (r»r»r, ', r, ') = (- V,' —2Zr, ' —V,' —2Zr, ')5(r, —r, ')5(r, —r, ')

V(r„r»r, ', r, ')=2(r, —rJ '5(r, —r, ')5(r, —r, ').
Atomic units have been used and continuous ma-
trix notation adopted for later convenience.

Proving the nonexistence of bound states re-
quires a method which provides lower bounds to
energy eigenvalues. The basic tool to be used
here is a well-known comparison theorem. 4

7 heo~e~ ~.—Let H'~ and IJ'~ be two Hermitian
Hamiltonians whose discrete eigenvalues below
the continuum can be characterized by the famil-
iar variational principle 8 = min(( IH I ()(( I P) ',
with the minimization for excited states carried
out subject to the constraint that I g) be orthogo-
nal to preceding eigenvectors. Denote the or-

(2)

dered eigenvalues of H~'~ by E, '-E, ' -. . . -E„'
. . .~E, ', where E, is the energy at which the
continuous spectrum (if any) begins. Then if
((IH' I() ~ ((IH' Ig) holds for all admissible
state vectors I g), Z„"' ~Z„'2 holds for all n, and

E, ') ~E,'. The result of the present paper will
be obtained from theorem 1 by letting H H Hp
+ V while H' is something more tractable.

The lower-bounding Hamiltonian H ' will be
constructed by generalizing a method introduced
by Bazley' to construct lower bounds to helium
eigenvalues: Replace V in H~ ~ =H =Hp+ V by
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