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Table II. The parameters of high-energy produc-
tion are a smooth continuation of the trends of
the low-energy data'' with R, now remaining
small as Q% increases to 2.2 (GeV/c)?. The phase
difference is consistent with zero except, per-
haps, in the highest @° bin.
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The meson spectrum is studied with use of an equal-time relativistic two-body equation
with electrostatic confinement potentials. A normalizability condition excludes all but a
bag solution which gives a spectral pattern in between the SU(6) and the chiral SU(3)
®5U(3) limits. Orbital mixing creates a pair of S, +°D, states sandwiching the P, level.
p-p’ and $/J-)’ pairs fit this picture very well,

Fully relativistic studies of quark-antiquark
systems have been done in the past using the
Bethe-Salpeter equation, as in the extensive
works by Bohm, Krammer, and Joos,! which
were based on the concept of the effective quark
confinement due to large quark masses. The con-
cept may still prove to be a viable one, but in the
alternative color confinement scheme the conven-
tional definition of the Bethe-Salpeter amplitude
would fail. This is because infinitely high fre-
quencies of the colored intermediate states force
such an amplitude to vanish. Therefore, I pro-
pose to investigate instead a relativistic two-body
wave equation of the form

(=iae¥ + Bm Yx@) = x(E) (= i@~V + B,
M-V x®. ()
636

Here the wave function x is given a 4X4 matrix
representation X, with indices @ and B8 refer-
ring to quark and antiquark spinor components,
respectively. I have taken the center-of-mass
system and T is a relative coordinate. 2, and

m, are the quark masses and M is the eigenvalue
of the system. The potential V (), which I as-
sume to be electric in origin as indicated by some
confinement models,?*® appears in the combina-
tion M -V, rather than in the combination of m,,,
—V for Lorentz-scalar potentials. The equation
differs from the Breit equation,* based on the one-
quantum-exchange approximation, in lacking the
current-current interaction term. However, rel-
ativistic covariance does not necessarily require
the presence of such a term, as can be seen from
the following example of a covariant generaliza-
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tion of Eq. (1) for a state of total energy-momen-
tum P

(ial_%w'ml)d)(xlsxz)
+¢T(x19x2)(iaz_%y +my) =0 (2)

where Uy, =n,V(x, -x,) withn,=P,/VP? and A

=A ,7". Equation (2) has a solution of the form
P(x,,x5) =0(Pe(x, =x,)) e ¥ *1x(x, =%, ), and in
the rest frame P=0, it reduces to Eq. (1) for x
with M =VP2, In the absence of any viable alter-
native, I will adopt Eq. (1), which is an obvious,
and the simplest, generalization of the Dirac
equation, for the purpose of studying the relativ-
istic binding by a confinement potential.

As is well known, the Dirac equation in an elec-
trostatic potential V(») leads to the Klein paradox®
if the potential is of confinement type, i.e., if it
rises indefinitely with increasing ». Although
Eq. (1) appears to suffer from the same disease,
we will see that the normalizability condition on
the wave function at a singular point » =R such
that V(R) =M excludes all but a bag solution,?
which vanishes for ¥ >R. Thus, contrary to the
case of the Dirac equation, we have a well-de-
fined eigenvalue problem’ for Eq. (1). With the
existence of the bound states thus assured, I will
be discussing in this preliminary note primarily
results which are based more on the structure of
Eq. (1) than on the detail of the potential, so that
I will also include nonconfinement potentials in
my discussion.

In order to reduce Eq. (1) I introduce the cus-
tomary representation® of the Dirac matrices by
two sets of Pauli spin matrices {p‘} and {oi} such
that a; =p,0; and B =p;, and expand x as

X=P1X; +P2 X2 +P3 Xs *+Xa» (3)

where the x;’s are 2X2 matrices spanned by {oi}.
Equation (1) now gives a set of coupled equations
for x;’s:

[—iU'V,Xl]- - W - V)X4=0;

[=io-v,x,]. = 2imy,— (M = V)x, =0,

[G'V:XZL - W - V)x:«: =07

= [0V, x5 )4 +2imy, = (M = V)x, =0.
Here the commutators []t refer to the Pauli spin
matrices, with V understood to operate directly
on X;. I have setm,=m,=m since I consider on-
ly states of definite charge-conjugation parity. I
reduce Eq. (4) further by assigning a specific

spin and orbital configuration to each x; for a few
low-lying states of physical interest. The spin-

()

orbit structure of x;’s is dictated by their trans-
formation properties under space reflection and
charge conjugation for a given angular momentum
J. For a state of parity €, and charge-conjuga-
tion parity €c, X;’s transform like x;(T) =+ € pX;(—T)
(plus for ¢ =3 and 4 and minus for 7 =1 and 2) and
X:(¥) =t €.Cx;,T(-T)C™* (plus for i =1, 2, and 3,
and minus for ¢ =4), where C =0,. Thus, ¥, and
X2 have the same spin-~orbit configuration while
X; and x, have different ones. As a customary
convention I label a state by the configuration of
X; and x,, which are represented by the spectro-
scopic notation 2°"!L; or a combination of two of
these (orbital mixing).

For a singlet state 'L;.,, one can write x;
=Y ,(6,0)F;(r) (for i=1,2). From (4), one sees
that x,=0 and x, =*L;;, +3L;.,. Eliminating X,
one obtains

F,==2im(M - V)" 'F, (5)
and
n 2 V’ ’
F, +<'r+__M-—V> F,
1 L(L +1
+ [Z(M—V)2 —-mz——(;zi——)]F2=0. (6)

The term 3V? is responsible for the Klein para-
dox if V=~ as -, For such a potential, there
appears a new singular point at » =R, where V(R)
=M. One readily sees from (6) that a regular
solution at » =R behaves like F,~(» —R)?, while

a mildly singular second solution behaves like F,
~const. The normalizability condition on the
wave function excludes the second solution be-
cause the corresponding F; amplitude is not nor-
malizable according to Eq. (5). Thus the bound-
ary conditions

F,(0y=const and F,(R) =0, )

are necessary and unique conditions to obtain a
finite solution. Since F,’(R)=0 also, F, connects
smoothly to F,=0 outside of R, where x,=x,=0
also by (4) and (5). Although x, is discontinuous
at » =R, no physical principle is violated by this
bag solution, The Klein-pardox solution violates
the boundary condition (7) and must be excluded.®
By introduction of an amplitude f,=»**Y(M
-V)"Y?F, one obtains the one-dimensional Schrd-
dinger equation

fz” —UL(r)f2=0, (8)
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with the effective potential U, given by
. M-V)? L(L +1)+ 4
T TR Tym-v)
3 V'2 1 1744
+— s+5 .
4M=-V)2 2(M-V)

U,=m

(9)

The boundary conditions corresponding to (7) are
fo~7rE* (for ¥ ~0),

fo~(r =R)*2 (for » ~R). (10)

We see that U(#) has an infinite barrier §(» —R)"2
at »=R if V() is of the confinement type. One
condition on V(7) is

V(0) =0, (11)

which gives from (5) a relation MF (0) = —2imF,(0),
which can be shown to be equivalent to the axial-
vector divergence relation.’® By requiring (11),
three types of potentials can be considered. The
first is of confinement type in which case the
boundary conditions (7) or (10) must be applied;
we see from (9) that M >2m in this case (called
case I hereafter), The second comprises poten-
tial wells such that V(») =0, including the attrac-
tive Coulomb potential, for which a repulsive
core is necessary to satisfy (11), There are no
singular points except for » =0 and » ==, where
the ordinary boundary conditions apply with M
<2m (case II), The third is a hybrid of the first
two (case TI). In this Letter I will simply assume
that there exists a potential V(») among the three
types which fits the low-lying singlet levels,

Then, the singlet levels serve as the reference
levels to be compared with triplet states.

Among triplets, the 3P, and 3P, states are the
simplest to study. For 3P, one has x1,2=(7-3
XTr~'F,, X;=0, and x,=3S,+°D,, By introduc-
tion of f,=#(M - V)*2F,, one has

fan —[Ul(’}") -—A(’}’)]f2=0, (12)
with
AP =V /[r(M-V)]. (13)

Similarly for *P,, one has x,,=0T7 'F ,(»), X,
=0, and x,=F,(7). For f,=+»(M-V)"Y2F, one ob-
tains

f" =l -2a(1)] f,=0. (14)

A(7r), which is obviously related to the spin-orbit
interaction, is positive-definite for case I, but
has an alternating sign for cases II and III be-
cause of requirement (11). Comparing Eqs. (12)

638

and (14), I conclude that

M(P)S M(P)Z M(P,), (15)

with the lower inequality being possible only for
cases II and III. To first-order perturbation in
A(r) one may write

2[MCP)P =[M(P)?+[MCP)?. (16)

Equations (12) and (14) indicate that the spin-or-
bit interaction A(y) I+ § splits the three otherwise
degenerate states. Since my Eq. (1) has no ex-
plicit spin-spin interaction, it presents a very
plausible picture. However, as we shall see lat-
er, the °P, state is mixed with 3F, and does not
belong to this multiplet. Although B(1235) (*P,),
A,(1100) (°P,), and 6(970) (°P,) satisfy the equal-
spacing law (16) very well and indicate ({(A(r)))
>0, the existence of A, is very much in doubt,"
and we may not exclude the possibility that (A (r))
is very small or even negative.

For the J¥ =1" state, one finds the spin-orbit
configurations x, ,(°S, +°D;), x;(°P;), and x,(*P,).
Writing x, =0+ V[€-TF,(»)] +G-¥[€-TG,(»)] (with ¢
=1,2), where € is a polarization vector, one can
reduce Eq. (4) to coupled equations in F, and G,.
With the further introduction of f,=#»2(M - V)/?F,
and g, =3 ir*(M = V)"*2G,, one obtains

f"=UW)f,=2mM=V)g,,
g1”—[Ux(T)"A(’V)]g1=2mA(1’)(M" V)t 2. (17)

It is remarkable that these equations involve the
centrifugal barrier for L=1, Thus, in the limit
of vanishing coupling between f, and g, which ob-
tains for m =0 in case I, one has two states,
/2(g,=0) degenerate with ‘P, and g,(f,=0) degener-
ate with °P,, both states still being a mixture of
%S, and ®D,. (The chiral-symmetry limit »z— 0
must be carefully analyzed'? in conjunction with
the boundary condition at »=R.) Under the as-
sumption that (A) is small, the introduction of
the coupling will split the two almost degenerate
levels, as can be seen from an approximate diag-
onalization of Eq. (17),

hi”—[UI(’I’)IS(’r)]hi=07

where S(r) = 2m[A()]*/? and k, =f,+ bg, with b
=[(M = V)*%/V']*2, In deriving (18), I have ne-
glected higher-order terms in A(y) and also treat-
ed b as if it is a constant. It may be noted that
the latter treatment is correct in case V is dom-
inated by a large attractive Coulomb potential
~g%/r. Then neglecting M against V, one has

S(¥) =2m /v and b =g. A splitting much larger

(18)
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than the spin-orbit splitting will occur if ((S(+)))
> ((A(7))). For example, taking V =% and as-
suming (7)~3R (with V(R) = M), we find that the
above inequality is equivalent to (2m(7))>1, an
inequality which can certainly be satisfied with
reasonable values of m and (7). The same condi-
tion holds for a large attractive Coulomb poten-
tial. Thus we propose that the pairs p-p’ and ¢/J-
¥’ be identified with such a pair of ®S, +°D, states,
which are separated from the 'P, state because of
a large splitting potential + S(»). One may thus
write a mean mass formula

Mg =3(M,°+M,?),

which is satisfied extremely well. This in turn
would support the assumption that the spin-orbit
interaction (A(y)) is small. A similar formula
applied to 3/J-yp’ will give M(*P, charmonium)
=3410 MeV. K this value is correct, then in-
equality (15) would contradict the identification
of x(3410) and x(3510) as the °P, and °P, states,™
respectively. If the identification holds, then one
must conclude that the mean mass formula fails
in this case. Another characteristic feature of
our model is that both ®S, +3D, states have the
same radial quantum number (no radial node),
contrary to the conventional picture of p’ and ¢’
being a radially excited state of p and i, respec-
tively. As a consequence, there will be no sup-
pression of the leptonic decay amplitude of p’ or
¥’ due to higher radial quantum number. I can-
not, however, make any numerical prediction at
this time,

In completely the same way I expect a pair of
JF=2% states (°P, +°3F,) which will sandwich the
D, state. If one identifies A,(1310) and A,(1900)
with such a pair, one will have M, *=3(M,*
+M .442), a relation very well satisfied. The con-
ventional L-S coupling scheme, in which A,, A,,
and 6 form split °P states, is obviously grossly
violated.

(19)
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