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Sum Rules for Charmonium and Charmed Mesons in Quantum Chromodynamics
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We consider the contribution of charmed quarks to vacuum polarization and to yy scat-
tering. In quantum chromodynamics the calculation is reliable for small photon momen-
ta provided that the quark mass m~ is large compared with the scale of the hadronic
mass p, , 4m, '» p . By the use of dispersion relations, the calculation is converted into
a set of sum rules which impose model-independent upper bounds on the charmonium lep-
tonic and photonic decay rates and enables one to estimate the hadronic widths as well.
Weak leptonic decays of the charmed mesons are also estimated.

Because of the simplicity of the quark structure,
the richness of the level system, and the large
mass, charmonium is uniquely suited for the
study of strong interactions. A lot of effort has
been made recently in this direction, mostly with-
in the framework of the model-dependent poten-
tial approach. In this Letter we will derive sum
rules for the charmonium decay rates which rest
only on such general assumptions as the validity
of quantum chromodynamics (QCD) at short dis-
tances and analyticity. The sum rules refer to
the integrals over the cross section of charm pro-
duction in e'e and yy collisions.

In the case of e'e annihilation the sum rules
are in agreement with the existing data. More-
over, the sum rules turn out to be very sensitive
to the contribution of the low-lying states and
some of them are practically saturated by the J/
(-meson contribution.

Encouraged by this confirmation of the sum
rules, we consider some processes not accessi-
ble to a direct experimental study such as charm
production in photon-photon collisions, and ex-
tract in this way predictions for the two-y-decay
widths of charmonium. Coupled with the usual as-
sumptions of the charmonium model, the sum
rules produce definite predictions for the total
hadronic widths as well.

Let us consider first the charmed-quark contri-
bution to vacuum polarization. For the bare
quarks it is given by the graph of Fig. 1(a). As is
well known, within QCD the graph can be trusted
for large negative" or complex' values of the
square of the photon momentum. The crucial ob-
servation is that for heavy quarks the bare graph
is reliable for the vanishing photon momentum as
well. The line of reasoning is the same as in the
case of heavy-particle photoproduction' and rests
on the large virtuality of heavy quarks. As a .re-
sult, all the loop integrations converge for virtu-
al momenta of the order P' = —m, ' and the T prod-
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where yn, is the charmed-quark mass and A, -is
the famous ratio B,=o, (s)(4r, a'/3s) ' for charm
production in e'e collisions; A, ~ ~ is the same

rC

s, j

FIG. 1. (a), (b),. (c) Feynman graphs for the vacuum
amplitudes induced by the c-quark electromagnetic and
weak currents. (d) An example of the first-order cor-
rection to the vacuum polarization (dashed line denotes
a gluon).

J'dxe""Trc(x)y„c(x), c{0)y„c(0)], is deter-
mined by the distances of the order x'-1/4m, '
which are supposed to be small as compared to
the usual hadronic scale: 4m, ' » p.'. Therefore,
perturbation expansion in the effective coupling
constant n, (rn, ') makes sense [from analysis of
the J/( decays, one concludes that o,(m&') =- a,
=0.3].

Using analyticity we convert the calculation of
the vacuum polarization at Q'-0 into a set of dis-
persion sum rules, and we find in this way
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ratio for the bare quarks, given by

Z, '"= Sq,'v(3 —v')/2. (2)

m, = 1.25 Ge7.

For higher n this value of m, does not fit the sum
rules well and the discrepancy approaches a fac-
tor of 2 for n= 8. This is an indication of the
growing role of the neglected terms for high n,
a phenomenon which is expected on rather gen-
eral grounds. We can check the sum rules in an

Here q, = -', is the charmed-quark charge, v is its
velocity, s(1 —v') = 4m, ', and the factor 3 is due
to color. Numerically, one gets

g (o)= 4 g (o)=12 g (o)= 64-
1 57 2 359 3 3159 4 231

(corrections of the first order in n, are consid-
ered below).

On the other hand, the physical value of R, is
contributed by the production of mesons with hid-
den charm (J/g, (', . . .) and of pairs of charmed
particles. The effective threshold for the pair
production is about 4 GeV, and we approximate
R, in this region by the step function, R, =

~o 8(s
—16). Since integrals (1) are well convergent,
the detailed structure of 8, in this region is not
of much importance.

Equations (1) define a set of values of m„one
for each n. The sum rules with n=1, 2, 3, and
4 are self-consistent and produce practically the
same m, . This is also true when we take account
of the gluon corrections of first order in n„and
our best fit is

which coincides with the experimental number
(the correction due to the g' meson is negligible).
Thus, the sum rules for the e'e annihilation are
in excellent agreement with the data.

Let us notice that the value of m, found above
is several hundred MeV lower than that usually
accepted in the literature. '"" It is worth em-
phasizing, therefore, that our determination of
m, refers to small distances, while in the poten-
tial approach to charmonium one deals with the g

quark at relatively large distances.
The value of m, found above can be used to de-

termine the charmonium decay widths into some
other channels. In particular, the two-y-decay
widths can be extracted from the sum rules for
the amplitude of scattering of light by light [see
Fig. 1(b)] which are as follows:

v, (s) ds
Sn

o. (0)~s~ds (n)
=8 '3q 4 ' (4)s" ' (4m, ')" '

where o, is the charm production cross section
for photons with parallel (a = II, e, II5,) and perpen-
dicular (a=&, 5, &e~) linear polarizations, re-
spectively, and 0, ) refers to the partonlike cross
section'.

alternative way; namely, for n=3, 4, the continu-
um contributions are about 8% and 4%, respec-
tively. Therefore, we can saturate these sum
rules by the J/g-meson contribution A&(s)
= 9mlVl& I'„5(s —M&')/cr~ and eliminate m, to find
the leptonic width of J/g,

~2 (g (0))4I'„=—Sq, , '(o)), M~ —-5 keV,

2

v„~ ~ =Sq,' [(5+2v —3v )ln —2v(5 —Sv )], (5)

2

cr,"'= Sq,' [(7 —2v' —v')ln —2v(3 —v'].
S 1 —v

(6)

From an explicit calculation one readily finds

(1) 5 ~ (2) — 8
gg (3) 124 g (4) 68

II 9 & ll 45& II 1575 & ll 1575 P

(1) —7 g (2) —14 ~ (3) — 268 g (4) 524
J 9& A 45 t & 1575 ) A 4725 '

As for the left-hand sides of Eqs. (4), they are
contributed by the charmoniurn levels and by the
pair production of charmed particles. The latter
we rather arbitrarily approximate by cr, = tt (s
—16)v,co~. Then for a =

II (a = J ) the continuum
gives 60, 30, 20, and 10'% (55, 20, 12, and 5%)
of the expected total for n=1, 2, 3, and 4, re-
spectively (because of the crossing properties of
the amplitude only even moments are of physical
meaning, while the odd moments are understood

as an analytical continuation).
Apart from the continuum, we keep explicitly

the contributions of pseudoscalar mesons q, and

r), ', v~(0 )=16rr'I' 5(s —M,-')/M, ; of the scalar
meson X„vo(0') = 16rr'I'y&5(s —Mo, ')/Mo, v, ~(0 )
= v,(0') = 0; and of the tensor one y„v ~~(2')
=v (2') = 40rr'I' 5(s —M, +')/Mo+, with only the
dominant amplitude being retained for the X,.
From sum rules (4) we find the following upper
bounds on the photonic widths of these resonanc-
es: I'(Xo-2y) &9 keV, I'(y, -2y) &4.5 keV, and

I'(q, -2y) &4.5 keV if M o
= 2.85 GeV, and I (ri,

-2y) &7.5 keV if 1Vl „,=3.0 GeV [here we identify
the scalar particle with the yo(3.41) state and the
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tensor meson with the X,(3.55) state].
Moreover, Eqs. (4) are consistent with the re-

lation' I'(y2-2y) =,~~I'(Xo-2y) which is true in the
nonrelativistic limit. Accepting this relation, we
find I'(yo-2y) = 4.6-5.4 keV. The predictions for
the pseudoscalar mesons depend on their masses,
and we get I'(q, '-2y)-I'(q, -2y) = 3.5 keV if M„
=2.85 QeV. On the other hand, if M„=3.0 Qeg,
then I'(q, -2y) = 6.5 keV and is substantially larg-
er than that of q, '.

The photonic decay widths are presumably re-
lated to the decay widths into two gluons, "and
the corresponding conversion factor is given by'
9n,2/8o'= 845 if a, =0.2. According to common
wisdom the total hadronic widths are given by the
widths of two-gluon decays. For the latter we
find I (X,-2 gluons) = 3.9—4.6 MeV, I (y, -2 gluons)
= 1.0-1.2 MeV, I'(q, -2 gluons) = 3 MeV (for M „C=2.85 GeV), I'(q, -2 glouns)= 5.4 MeV (for M„
=3.0 GeV). These results are in agreement with
the nonrelativistic model predictions, "and for
the y, (3.41) and y, (3.55) states are consistent with
the existing data. However, one must keep in
mind the uncertainties in the calculation of the
hadronic width which are due to the neglect of the
interaction between gluons and of the possible ad-
mixture of light quarks and/or gluons in the
charmonium states, e.g. , in a form of molecular
charmonium. ~

When deriving Eqs. (1) and (4) we neglect the
contribution of light quarks which arises in high-
er orders in the quark-gluon interaction. Some
doubt may arise whether this is justified since
for low external momenta the virtuality of light
quarks is small and they interact strongly. It is
obvious, however, that although the interaction
between light quarks is strong, their interaction
with deeply virtual c quarks is weak. The transi-
tion gc —gluons takes place deep inside the light-
quark cloud, where there is asymptotic freedom.
From the small hadronic widths of J/g and g' we
know that the annihilation of c quarks into gluons
is small. The situation in the case of low exter-
nal momenta is by no means worse than that for
charmonium decays where only the exchanged c
quark is deeply virtual. Thus, it is quite consis-
tent to neglect the light quarks in calculating elec-
tromagnetic decays of charmonium.

The same technique can be applied to the analy-
sis of the weak decays of the charmed mesons.
Let us consider to this end the vacuum polariza-
tion by the weak currents j„=q y„z and j„'= qy„y,z,
where q stands for a light quark [see Fig. 1(c)J.
Neglecting the mass of the light quark and terms

of higher order in n, we find, for s «n;, ',

f~' 1 p„(s') ds'
M~'(M ~' —s) w s'(s' —s)

3m„' " (s' —m ')'ds'
87I',2 (s')'(s' —S) '

1 P,(s') ds'
My —S 1r S (S —S)

(7)

a,"'=Z~'~ 1+ ' — ———o, . (9)
2mo. , 3+@ m 3

3 2 477

Moreover, the question arises as to which mass,
in the field-theoretical language, enters the sum
rules. Equation (9) is true, in fact, if m, is un-
derstood as a position of the pole. In the theories
with quark confinement it seems more appropri-
ate to introduce mass in the deep Euclidian re-

1 " (s' —m„')(2s'+m, ') ds'
8w' m,2 (s')'(s'- s) (8)

Here p, and p, represent the continuum contribu-
tion, while the poles corresponding to the pseudo-
scalar (P) and vector (U) mesons are accounted
for explicitly; f~ and A ~ are the decay constants
of these mesons defined as (0 ls„j„'lP) =f~M~'
and (0 l j„ l V) = X ~M ~'V„, respectively.

Expanding Eqs. (7) and (8) at small s we get a
set of sum rules which impose upper bounds on
the coupling constants. In particular, for M(F)
= 2.0 GeV and M(E*) = 2. 15 GeV we find fan&180
MeV [I'(F-pv) =G 'cos'6, f 'm„~M„/8m &5.3 x109
sec '], and Az

2 &2.2x10 '. It is worth mention-
ing that exact SU(4) symmetry leads to a value
which is approximately 3 times higher than that
determined above. Thus, we expect that the dif-
fractive production of I* mesons in the neutrino
experiment is lower than is implied by the formal
application of the SU(4) symmetry. In the case of
the D mesons our upper bounds are fD&150 MeV
[I'(D- pv) = G F' sin'0, f~'m „'M~/8p & 1.9 x 10' sec ']

($.4 x $0
The self-consistency of the calculation of the

widths presented above can be tested in a number
of ways. In particular, it is possible to extract
the same vertices as those considered above in
an independent way by studying sum rules for
other amplitudes. The new relations agree with
those obtained above and are described elsewhere.

In conclusion, let us consider the effect of the
first-order corrections in n, on the sum rules
for e e annihilation [see Fig. 1(d)]. To evaluate
these terms one has to replace the ratio R, ~ in
Eqs. (1) and (2) by R,~", where'o
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gion, i.e. , at p'= —m, '. The use of this mass is
also preferable from the point of view of applica-
tion of renormalization group, and our definition
of mass m, refers exactly to the point p'= —m, '
[from an explicit calculation we find that in the
Landau gauge m, (p' = —m, ') /m, (p' = + m, ') = 1
—(2n, ln2)/p].

Then, the correction factor to the sum rules de-
pends only weakly on n for v = 1, 2, 3, and 4 used
in our analysis and varies from 1+0.7z, to 1
+0.2+,. This correction does not explain the
breaking of the sum rules for n ~ 5 discussed
above. There are two other sources of correc-
tions, however. These are the terms of higher
order in o, and terms of the order p,'/4m, 2. For
high g, terms of the order +,' are calculable and
a,re indeed essential. Terms of the order p,'/4m, '
are not calculable at the moment.
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With use of SU(4) as a spectrum-generating group, the radiative decay rates of the
charmed vector mesons and of J (g) are calculated. With the known decay rates of the
"old" mesons I (cu ~), I (y —gy), I (p —~), and I'(g+-p "y) as input, one obtains
I'(I(+*—I~+y) =2.6 keV, I (cu —gy) =220 eV, I'(p —qy) =4.8 keV, I"(g —yy) =1.6 keV, I (D

D y) = 850 eV, and I'(D+*—D+y) = 22 eV.

In an earlier paper we have discussed the radi-
ative decay of the J (p) in an approach in which
SU(4) is considered as a spectrum-generating
group. ' This method with use of the spectrum-
generating group is a nonperturbative approach
to broken SU(4), ' similar to that in which SU(4) is
considered as the dynamical stability group of
the velocity operator' I'&M '.

As a consequence of this assumption the ampli-
tude contains, in addition to the SU(4) Clebsch-
Gordan coefficients, a symmetry-breaking factor
(suppression factor) 4, which is a function of the
masses involved. The precise form of 4 as a
function of the vector- and pseudoscalar-meson
masses m„and m~ appearing in the radiative de-
cays V -Py depends upon the assumption about
the SU(4) property of the "current" operators
V& .4 This assumption should be chosen such
that, in the limit when the spectrum-generating

group SU(4)z goes into the SU(4) symmetry group
the V„become SU(4) tensor operators. Since
there are many possible generalizations away
from this limit, we determined in Ref. 1 the pre-
cise functional form of the suppression factor 4
phenomenologically from the known radiative de-
cay rates of the "old" vector mesons I'(&u -&y),
I'(&p-qy), I'(p-vy), and F(EP*-K y). The
three functions which fitted these decay rates
are'

C(mv, m~) =(m~~+mz~)/(mmmm~)

for p = 2, 1, and 2. The decay rate for the proc-
ess V -Py is given by

I'(&-Py) = ~g„~~'[—,', um„'(1-m~'/ 'm)'], (2)

with

g, =g&I JV") V&C(m„, m, ),
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